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Introduction 
 
 There are two reasons for writing this book.  First, I believe that JSDOOP--
coupling the object-based modeling of JSD with object-oriented implementation--is a 
promising method for information system development.  Second, I believe the clear and 
seminal thinking of Michael Jackson about program and information system design 
methodology deserves more attention than it has received in the United States; and his 
contributions have often been misrepresented.1 
 
1. The promise of JSDOOP 
 
 In the Spring of 1991, I experimented with implementing a JSD specification into 
an object-oriented programming (OOP) language (Smalltalk).  JSD seemed to me then to 
be object-based in the sense that it begins with a model of the real world in terms of a set 
of entities (objects), their actions (behavior), and constraints.  In fact, as I found later, 
JSD is object-based in the most fundamental sense--the structure of a program or 
information system is based on the structure of the problem.  This is the single most basic 
principle throughout Michael Jackson's writing.  As John Cameron puts it:  
 

"Jackson System Development (JSD) and Object-Oriented Design (OOD) 
have one major--arguably central--principle in common; namely that the 
key to software quality lies in the structuring of the solution to a problem 
in such a way as to reflect the structure of the problem itself.  There 
should be a simple and demonstrable correspondence between a (real 
world) component of the problem and a (software) component of the 
solution.  The two methods also use similar concepts to describe the 
problem domain (or 'real world').  It is considered to consist of identifiable 
objects ('entities' in JSD) and operations that are either performed or 
suffered by these objects ('actions' in JSD}."2 

 
 My investigations showed that indeed a JSD entity mapped into a Smalltalk 
object, with JSD actions mapping into methods and an entity's state vector into an 
object's instance variables.   
 
 There is overwhelming evidence that JSD specifications can be directly 
implemented in OOP even without proving the concept by implementing JSD 
specifications: 
 
 (1)  When we examine what an entity is in JSD, we find that it is consistent with 
an OOP object. 
 A JSD entity has the following properties: 
                                                 
1  As an example, in one of the articles surveying OOD in CACM, Oct 1991, JSD is said to be an acronym 
for "Jackson Structured Design".  In fact, JSD stands for "Jackson System Development".  More 
importantly,  anyone familiar with Jackson's methodology knows that Jackson argues forcefully against 
structured design methodology which is associated with functional decomposition. 
2  "JSD and Object Oriented Design" by J. R. Cameron and A. Birchenough in [Ca89], p. 305. 
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 (a)  entities of the same type form a class; the program text for all individual 
entities is the same; 
 (b)  an entity has different states, corresponding to different actions it performs or 
suffers over time;  the state vector of an entity consists of all of its local variables and a 
text pointer to its process text; 
 (c)  associated with each action of an entity is process text that models that action 
in the real world; 
 (d)  each entity may also have connected to it additional functions  
 (e)  entities in the real world communicate with entity process models by 
messages (serial data stream) that transmit real-world information about actions that an 
entity performs or suffers    
 
 In total, all of these properties are consistent with the objects in  OOP languages.  
So, an entity should map easily into an OOP object. 
 
 (2)  JSD specifications are in principle executable, that is, the program text can be 
constructed from an entity's structure and the structure of functions superimposed on the 
initial network of entities using JSP.  Implementation is by program transformation, of 
which there are three main techniques: 
 
 (a) writing process texts in a form which allows them to be easily suspended and 
reactivated so that their execution can be scheduled explicitly; 
 
 (b) separating process state-vectors from their process text, so that only one copy 
of the process text need be kept of each type of process, while as many copies of state 
vectors are kept as there are instances of the entity; 
 
 (c)  breaking process texts into pieces which can be more conveniently loaded and 
executed in a conventional environment 
 
 But all three techniques can be readily implemented simply by using an  OOP 
language as follows: 
 
 (a)  In an OOP, entities are activated whenever a message is sent to them, inactive 
otherwise.  They remember their state, and this can certainly include their text pointer.  
Thus, I see no need for the program inversion, the transformation of a program into a 
variable state (resumable) subroutines.   
 
 (b)  Any instance of an OOP class inherits the methods of that class; in other 
words, the program text of instances is stored once as part of the object class, not with 
each instance.   
 
 (c)  Finally, OOP methods are precisely the dismemberment of the process text 
into convenient modules--we typically have a method for each action and for each 
function associated with an entity.  
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 Thus, although JSD has its own implementation methods, object-oriented 
programming (OOP) languages have features that make it very tempting to discard JSD's 
implementation methods in favor of a direct mapping into an OOP language.   
 
 (3)  OOP objects communicate with messages 
 
 In JSD, the connection between an entity in the real world and an entity in an 
information system is usually by serial data stream connection, in which the real world 
entity produces a message for each action performed (or suffered).  
 
 In OOD, objects communicate by messages (a serial data stream).  Since state 
vectors are part of an object, state vectors are inspected  by sending messages as well. 
 
 In summary, JSD specifications are object-based.  The implementation of JSD 
specifications are more naturally implemented with an OOP language, which contain the 
essential features needed to implement a JSD network of communicating entity 
processes. 
  

  
2.  Jackson's Contributions to Design Methodology 
 
 Michael A. Jackson has made original contributions to program  and information 
systems design methodology.  He originated the program design methodology known as 
Jackson Structured Programming (JSP)--his book, Principles of Program Design (1975)  
has been rightfully called a classic.   Building on the ideas of JSP, he developed together 
with John Cameron and co-workers, the Jackson System Development (JSD) method for 
designing information systems.   
 
 Jackson's thinking about program and information systems design was often at 
odds with prevailing opinion.  In the early 1970's, Jackson advised against flowcharts as a 
program design tool and invented Jackson structure diagrams.  With Dan McCracken he  
early articulated  dissatisfaction with the traditional life cycle concept, arguing that it was 
stultifying, and presented iterative prototyping as an alternative.  He sharply criticized 
top-down, functional decomposition, arguing that we should first deal with what the real-
world is about, and only later deal with what a system is supposed to do.   Whereas data 
modeling results in a static model, Jackson argued that information systems should model 
the real world dynamically:  JSD models the actions of entities--their real-time behavior.  
He pointed out that stepwise refinement doesn't provide a method.  In contrast, his 
constructive method provides checks at each step on the correctness of design.  Finally, 
he suggested that formal proofs of information systems are unlikely to be convincing 
because of their length, and that establishing correctness of a  specification--a 
specification that can be directly executed after suitable correctness-preserving 
transformations--is a more promising approach to software validation. 
 
 Jackson is at his pedagogical best reasoning qualitatively about programs and 
systems.   He instructs us through examples.  He shows us recurring design dilemmas, 
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and teaches us how to resolve them.  We are persuaded of each of his discoveries about 
program design.  His unifying insight that programs and systems both model problem 
domains led him to extend the main ideas of JSP from the domain of programs to that of 
systems. 
 
 In the first phase of JSD, the developer specifies a model, based on discussions 
with the user, that reflects the structure of the problem domain in terms of the behavior of 
real-world entities.  The specification leads directly--seamlessly--to an entity's program 
text.  JSD is object-based. 
 
 Jackson is a 'structurist'.   He takes a static "bird's eye" view of a program or 
entity process, arguing against the error-prone flow-of-control mentality that asks "What 
happens next?", asking instead "What is the underlying structure of the problem?"   New  
control structures and compiler methods are needed to preserve the structural integrity of 
programs that require backtracking and inversion.   If software must be optimized for 
performance purposes, this should be done only after the design reflecting the problem 
structure has been completed.  
 
 JSP and JSD are grounded in the simple qualitative notions of serial data stream, 
sequential process, and regular expression.  Jackson's ideas have a strong affinity to those 
of C. A. Hoare, and JSD has been shown to be theoretically  consistent with Hoare's 
investigations of parallel processing.   
 
 Jackson's work has had a seminal influence on the research of others (e.g., 
Cameron, Sanden, Zave) and on program and information systems design pedagogy in 
Europe and elsewhere. 
 
 Jackson's original investigations of information systems lead us to ask,   'Are not 
information systems--models of communicating sequential processes--fundamental 
objects of study in computer science?' 

 6



 Preface 
 

 This text evolved from a long-standing interest in Jackson methodology that 
began when I learned, as a programmer-analyst at the World Health Organization, to use 
JSP to specify programs that were subsequently coded by other programmers.  Later, I 
practiced JSP as a programmer involved in validating population census data for Senegal 
and Guiné-Bisau.   I first taught JSP as part of a course in program design (1979), and 
later gave a full course in JSP (1986).  I taught elementary JSD as part of courses in 
systems analysis (1985), in management information systems (1988-89), and in 
introductory computing (1991).  During the Fall of 1991 while a visiting lecturer at 
Petrozavodsk State University (Russia), I prepared a set of lectures on JSP and JSD in a 
course on programming systems that I team-taught with Dr. Anatoly V. Voronin of the 
Department of Applied Mathematics and Cybernetics.  I gave a workshop in Jackson 
methodology at the ACM SIGCSE Technical Symposium in March, 1992. 
 
 JSP is teachable.  Many programmers have expressed their experience that JSP 
gave them insights about program design that they never had before--for the first time, 
they understood how to design programs that they had been writing without really 
understanding them.  JSP can and should be taught in any computer information systems 
(CIS) curriculum as part of the first and second courses in programming.  JSP is 
language-independent, and can be taught in any introductory programming course.  JSD 
should be taught after JSP,  as a first course in information systems design or software 
engineering.  
 
 A data model can be derived from a JSD specification.  Data is associated with 
actions (events) of an entity process; the data constitutes the state vector of the entity 
process.  Although data models, such as the relational model, can be taught 
independently of systems development,  database design is properly understood, not as a 
starting point for modeling an information system, but rather as part of the 
implementation phase of system development.  
 
 In the Spring of 1991 I explored object-oriented design with some students.  I had 
the intuition that JSD entities and actions were closely related to object-oriented objects 
and methods, and I used this seminar to implement a JSD specification in Smalltalk. 
 
 JSD is an object-based method of analysis.  A JSD specification can be 
seamlessly implemented using an object-oriented programming language:  entities, 
actions, and attributes of a JSD specification map into objects, methods and instance 
variables of an OOP language.  I have termed the method of implementing a JSD 
specification using an OOP language "JSDOOP".
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0    Introduction  
 
 In the chapters that follow, we will explore how to design programs and develop  
information systems.  The approach we use is the software development methodology of 
Michael Jackson.   In fact, the methodology is one, but is known by two acronyms:  JSP, 
Jackson Structured Programming, a method for designing programs; and JSD, Jackson 
System Development, a method for designing information systems.  JSD evolved from--
may be viewed as a superset of--JSP. 
 
 JSD is object-based, that is, JSD models the behavior of the objects of interest in 
a user's problem domain.  A JSD specification is not some set of abstractions that only 
programmers and analysts can understand, but consists of the same objects that the users 
of the system know from their day-to-day activities.  This is the essence of what object-
based means. The third part of these lectures deals with coupling a JSD specification with 
object-oriented implementation--what I have termed JSDOOP.  We present examples 
mapping a JSD specification into an implementation using the object-oriented 
programming language Smalltalk.  
 
  Michael Jackson invented JSP from 1972-74 and JSD with John Cameron and 
other colleagues who worked for Michael Jackson Systems, LTD during the late 1980s.  
Jackson has written two books, "Principles of Program design" in 1975, which describes 
JSP, and "System Development" in 1983 which describes JSD.  Another primary source 
material for JSP and JSD is "JSP & JSD: The Jackson Approach to Software 
Development" by John Cameron (1983 and 1989).  Other sources on JSP and JSD may 
be found in the bibliography.  
 
 Jackson's writing excels in clarity and expository approach.  If you are interested 
in understanding Jackson methodology, you cannot do better than to read his own works. 
 
 We will start with JSP first. 
 
1    Program Structure  
 
1.1   Introductory Remarks 
 
 At the outset,  it is worth taking note of several themes in Jackson's thinking: 
 
 (1)  Design is about structure, about the relation of parts to the whole.  The basic 
function of program flow charts--especially during the 1960's and early 1970's--was to 
show the flow of control in a program.   A flow chart examines the dynamic 
representation of a program:  "What happens next?" In Jackson's thinking, the design of a 
program follows from the static structure of a program's text:  "What is the relationship of 
parts to the whole?"  Since program design is concerned with program structure rather 
than with program execution, we shouldn't use flow-charts as a tool for designing  
programs. 
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 (2)  There is a difference between getting a program to work and getting it right.  
A program may work, but may be wrong--it may be difficult to read, may not model the 
problem to be solved, may be difficult to maintain.  
 
 If a program is right, e.g. it has the correct structure,  it will be easier to read and 
maintain.  And, a program coded from a correct design is quicker to test, since there will 
be fewer logic errors requiring redesign.  
 
 (3)  JSP is a constructive design method.  By the phrase "constructive design 
method", we mean that steps are defined and guidelines given at each step to check the 
correctness of the design so far.   
 
 In the 1960's, we used modular programming as a design method.  But what are 
the criteria for deciding on what becomes a module?  Unfortunately, there is no decision 
procedure to guide the designer in the choice of modules. 
 
 Likewise, In the 1970's, step-wise refinement was proposed as a design method 
by E. Dijkstra.  Design proceeded by top-down decomposition using the control 
structures of structured programming (sequence, selection and iteration).  But how do we 
decompose a problem top-down?  There is no decision procedure to guide the designer.   
Moreover, the biggest decomposition decision must be made right away--the first 
decomposition--when we have little experience with the problem at hand.  Finally, we 
may question whether stepwise refinement constitutes a method, since it doesn't provide 
decision criteria to guide the designer during each step of the design. 
 
 Like step-wise refinement, JSP, as the "SP" in "JSP" indicates, is a structured 
programming methodology, e.g. it relies heavily on control structures for sequence, 
selection and iteration;  however,  it is not a top-down, but rather a constructive method 
in which there are criteria that guide the designer at each step of the design process.   In 
JSP we construct  a model of the task to be solved in the form of a data structure.  This 
data model guides the design of the program.  
 
 (4)  Jackson gives us a rule about optimizing programs for efficiency.  The 
rule is as follows: 
 
 Don't optimize!   
 If you have to, do it as the last step, after you have designed the program 
properly. 
 
 The reasons for the rules about optimization are (1) optimization is often 
unnecessary, and (2) optimization distorts the structural correspondence between a 
program and the problem it models.  Thus, optimization tends to obscure the meaning of 
a program, making it more difficult and expensive to maintain. 
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1.2 An example:  Printing a multiplication table3 
 
 A multiplication table is to be generated and printed.  The required output is: 
 
 1  
 2 4 
 3 6 9 
 4 8 12 16 
 ... ... ... ...  
 10 20 30 40 50 60 70 80 90 100 
 
 The table is to be printed on a line printer using only the basic statements for 
writing lines of text. 
 
 Here is a badly designed program to solve the problem: 
 

program mult_table (input, output); 
 var 
  row_no, col_no, k: integer; 
  line: array[1..10] of integer; 
 procedure displayline; 
  const 
   blanks = '    '; 
  var 
   col_no: integer; 
 begin 
  write(' '); 
  for col_no := 1 to row_no do 
   if line[col_no] = 0 then 
    write(blanks) 
   else 
    write(line[col_no] : 4); 
  writeln 
 end;  {displayline} 
 procedure computeline; 
  procedure computelement; 
  begin 
   col_no := col_no + 1; 
   line[col_no] := row_no * col_no 
  end;  {computelement} 
 begin 
  displayline; 
  row_no := row_no + 1; 
  col_no := 0; 

                                                 
3This example is adapted from Jackson, M. A. [1], pp. 2-7. 
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  while row_no <> col_no do 
   computelement 
 end;  {computeline} 
begin 
 writeln; 
 row_no := 1; 
 line[1] := 1; 
 for k := 2 to 10 do 
  computeline; 
 displayline 
end. 
 

 The program design is based on a flow-chart.  It works correctly, producing the 
required output.  The coding itself conforms to the tenets of structured programming:  
while statements control iteration, and there are no go to statements.  But the structure is 
hideously wrong. 
 
 Consider what would be required to revise the program to produce any of the 
following outputs: 
 
(i) print the upper-right triangular half of the table instead of the lower-left triangular 
half;  that is, print: 
 
 1 2 3    4   5   6   7   8   9 10 
  4 6  8 10 12 14 16 18 20 
   9 12 15 18 21 24 27 30  
       ... ... ...   
       81 90 
                   100 
 
(ii) print the lower-left triangular half of the table, but upside down; that is, with the 
multiples of 10 on the first line and 1 on the last line; 
 
(iii) print the right-hand continuation of the complete table; that is, print: 
   
  11   12   13   14   15   16   17   18   19   20 
  22   24   26   ...   ...   ...   ...   ...   ...   ... 
  ...   ...   ...   ...   ...   ...   ...   ...   ...   ... 
 110 120 130 140 150 160 170 180 190 200 
 
 Each of these changes should be easy to make.  The first change affects only the 
choice of which numbers are printed within each line; instead of printing line[1] up 
through line[row_no], we wish to print line[row_no] through line[10].  We should be able 
to make local changes to the program--perhaps in the third and fourth lines of 
computeline--but we cannot.  Instead, we essentially need to rewrite the entire program!  
We are similarly defeated by the second and third changes. 
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 The essence of the difficulty is this:  we are given simple and local changes to 
output specifications:  in the first case, to alter the choice of numbers on the line;  in the 
second case, to later the order of printing the lines; in the last case, to alter the choice and 
values of numbers to be printed in each line.  We therefore look to make corresponding 
local changes to the program.  But where is the program component that determines the 
choice of numbers to be printed?  Where is the component that determines the order of 
the lines?  Where is the component that determines the values of the numbers?   The 
answers are not so simple as we had hoped. 
 
 Superficially, computeline appears to process each line.  In fact, however, 
computeline prints line[row_no] and generates line[row_no+1].  So, computeline is 
executed 9 times, and the 10th line is printed in the main program.  In short, the program 
does not model the structure of the problem. 
 
The program should have been as follows: 
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program mult_table (input, output); 
 var 
  row: integer; 
  line: array[1..10] of integer; 
 procedure clearline; 
  var 
   col_no: integer; 
 begin 
  for col_no := 1 to 10 do 
   line[col_no] := 0; 
 end;   {clearline} 
 procedure displayline; 
  const 
   blanks = '    '; 
  var 
   col_no: integer; 
 begin 
  write(' '); 
  for col_no := 1 to 10 do 
   if line[col_no] = 0 then 
    write(blanks) 
   else 
    write(line[col_no] : 4); 
  writeln 
 end;  {displayline} 
 procedure computeline; {compute a line} 
  var 
   col_no integer; 
  procedure computelement; 
  begin 
   line[col_no] := row_no * col_no; 
  end;  {computelement} 
 begin 
  for col_no:= 1 to row_no do 
   computelement; 
 end;  {computeline} 
begin 
 for row_no:= 1 to 10 do 
  begin 
   clearline; 
   computeline; 
   displayline 
  end; 
end. 
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 The program processes the whole table; the procedure computeline processes 
each line;  the procedure computelement processes each number; the table consists of 10 
lines and computeline is executed 10 times.  Each line consists of row_no numbers, and 
computeline executes computelement row_no times.  There is a perfect correspondence 
between program structure and problem structure. 
 
 We can produce (i) - (iii) by the simple and local program changes shown below: 
 
(i)  in computeline:  for col_no := row_no to 10 do 
(ii) in computeline: for col_no := 10 downto (11-row_no) do 
      in computelement: line[col_no] := (11-row_no)*col_no 
(iii) in computeline: for col_no := (10+col_no) to 20 do 
      in computelement: line[col_no] := row_no*(10+col_no)  
 
 The program was designed using a structure diagram.  
 
1.3 Structure Diagrams, Program Structure and Data Structure 
 
 Clearly, the example of the multiplication table problem shows that a badly 
designed program can be costly and difficult to maintain.  A compelling reason for 
constructing well-designed programs is to minimize maintenance costs.  The key is to 
produce programs whose structure corresponds to the problem it solves. 
    
 One lesson to be learned is that one should not use flow-charts as a design tool:  
design is about structure, and flow-charts, as the name suggests, is about flow-of-control.  
When using flow charts as a design tool, the programmer, instead of thinking about the 
structure of the program, will think about its execution in the computer.   
 
 A more positive lesson is that program structures should be based on data 
structures.  There are deep reasons why this is so, and they are depicted in the following 
section. 
 
Exercises:   
(a) Make modifications to the badly-designed program to produce each of the outputs 
given.  
(b) Make modifications to the well-designed program to produce each of the outputs 
given.
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2   Jackson Structure Diagrams 
 
2.1 Jackson Structure Diagrams 
 
 Design is about structure, about the relation of parts to the whole.  Programs 
consist of the following parts or components: 
 
    (i) elementary components 
 
 Elementary components have no parts.  Examples are elementary statements in a 
programming language or primitive operations of a machine. 
 
 Sometimes, using bottom-up design, we will extend a programming language 
with new operations.  For example, if we need to manipulate matrices, we can define an 
abstract data type, matrix, together with arithmetic operations.  We could then multiply 
two matrices, for example, with a statement such as matmult(a, b), where a is an m by n 
array and b is an n by p array. 
 
    (ii) composite components 
 
 There are three types of composite components--components having one or more 
parts: 
 
    (a) sequence 
 
 A sequence is a composite component that has two or more parts occurring once 
each, in order.  In the Jackson structure diagram shown on the left below, A is a sequence 
consisting of parts B and C.  B occurs once, followed by C.  To the right of the structure 
diagram is a textual representation, known as Jackson structure text, of the structure 
diagram.  Pseudocode representation of the structure diagram is shown at the far right. 
 

B

 A

C

A seq

   do B; 
   do C;
A end

Jackson structure 
diagram

Jackson structure 
text

Pseudocode

  begin

  end
  do B; 
  do C;

 
 
(b) selection 
 
 A selection is a composite component that consists of two or more parts, only one 
of which is selected, once.  In the structure diagram below, A is a selection consisting of 
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parts B and C.  Either B or C is selected, not both.  Jackson structure text and pseudocode 
representations of the structure diagram are shown to the right. 
 

B C

 A

00

A sel

   do B;

A alt

   do C;

A end

if   <cond-1> 

endif

then
   do B;

   do C;

Jackson structure 
diagram

Jackson structure 
text

Pseudocode

<cond-1>

<cond-2> else if   <cond-2> then

 
 
 In the structure text, the condition for selecting component B or C is written 
explicitly to the right of the selection header.  Note that the condition must be evaluated 
before we can determine which component we have. 
 
 Whereas in most programming languages, condition-1 would be evaluated before 
condition-2 in the example above, no such ordering is implied by the structure diagram.  
Consequently, condition-2 cannot in the structure diagram be expressed under the 
assumption that condition-1 has been evaluated and is not true; rather, condition-2 must 
explicitly express the condition for which component B is selected without reference to 
the condition governing the selection of component A.  
 
 Note also that the normal interpretation of the if then...else if...then...endif 
statement allows for a null action if neither condition is met.  However, the structure 
diagram indicates that either B or C must be selected.  To allow for the case when neither 
of the conditions for B or C is  met, we would draw the structure diagram shown below: 
 

 

A

B C
° ° °

D
 

 
 
The condition for D would be not (cond-1 or cond-2).  To express null action, the 
component D would do nothing.  
 
 From this example, we see that structure diagrams are a general design tool that 
can and should be explicit in depicting the structure of program components. 
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 Sometimes we have a situation in which data occurs or doesn't, depending on 
some condition.  This form of degenerate selection is depicted by the following structure 
diagram and  text representation: 
 

Jackson structure 
diagram

Jackson structure 
text

Pseudocode

A  sel <cond>

    do B; 

end

if <cond>

° °
B

A

_

A

then

     do B;

endif

 
 
The structure diagram can be abbreviated as shown below: 
 

°
 B

A

 
 
 
(iv) iteration 
 
     An iteration is a composite component that consists of one part that repeats zero or 
more times.  In the diagram below, A is an iteration containing a part B which repeats 0 
or more times.  The  Jackson structure text and pseudocode representations of the 
structure diagram are shown to the right of the structure diagram.. 
 

 A

 B
*

while <cond>

endwhile
do B;

A iter  

  do B;

A end

Jackson structure 
diagram

Jackson structure 
text

Pseudocode

<cond>

 
 
The while...endwhile construct rather than the repeat...until form of indefinite iteration 
will always be used for two reasons.  First, this form, with the condition test at the 

 17



beginning, is the most general, including the case of an iteration with a part that iterates 
zero times.  The repeat...until form has no condition on entry, and its component part is 
always executed once.  The condition for subsequent repetitions indicates that there is 
something different between the context of the first and subsequent occurrences.   
 
 Sometimes, if an iteration must have at least one occurrence of the iterated part, 
we will show this explicitly as shown below: 

 

A

B1 A-body

B
*

 
 
Usually, the first occurrence has a different context--as when the first occurrence requires 
special processing--and it is thus proper to depict the iteration in this explicit form. 
 
 Consider the structure diagram below, depicting a file that contains three record 
types, T1, T2 or T3, containing the values 1, 2, or 3 respectively in the field, rectype.4 
 

FILE

T1 FILEBODY T3

T2
*

Jackson structure 
diagram

Jackson structure 
text

PFILE seq

           do T1;

iterPBODY

               do T2;

PBODY end

do T3;

PFILE end
 

 
 The structure text corresponding to the structure diagram is shown to its right. 
 
 The question that arises is, 'What is the correct condition to write for the iteration, 
PBODY?"  It seems simple to write, "until T3", but this would be a mistake.  PBODY 
                                                 
4  adapted from Jackson, 1975, p. 26 
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iterates a component, T2, so the explicit condition for the iteration is "while T2", e.g. 
"while rectype = 2.  If we use the condition "until T3", we are relying on a property of 
the specification of FILE not FILEBODY.  If the specification of FILE changed, so that a 
T4 record is interspersed between FILEBODY and T3, we would have to modify the 
condition controlling the iteration of PBODY, even though the specification of the 
component FILEBODY has not changed.  An accumulation  of small changes of this kind 
can have a large effect on the cost of program maintenance.  The guiding principle is to 
code explicitly the conditions that specify the processing of each program component.     
 
 Generally, we will be explicit in depicting composite structures.  If a sequence is 
part of a component that is not the root of the structure, however, we will relax the 
explicit begin....end  demarcation for sequence, as is shown in the following example: 
 

Jackson structure 
diagram

Jackson structure 
text

Pseudocode

A

B C

D E

° °

A sel

   do B;

A alt

   do D; 
   do E;
A end

if   <cond-1> 

endif

then

   do B;

   do D; 
   do E;

<cond-1>

<cond-2> else if   <cond-2> then

 
 
The sequence C, consisting of components D and E, is not explicitly demarcated in the 
structure text or pseudocode. 
 
2.2   Examples 
 
(i)  A simple book consists of pages; a page consists of lines of text; a line consists of 
words. 
 
 Here is a first attempt at a structure diagram: 
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Simple book

......... Page 1 Page 2

.....  Line 1   Line 2   Line N

......Word 
  2

Word 
  N

Word 
  1

 Page N

   Line 1    Line 2 ..    Line N

... Word 
  N

Word 
  1

Word 
  2

 
 
 We can simplify this effort replacing each sequence by an iteration: 

Simple book 
(Pages)

Page 
(Lines)

*

Line 
(Words)

*

Word
*

 
 
 We see from this example that iteration is a generalization of sequence.  Note that 
a simple book consists of pages; a simple book (pages) is an iteration--the part that 
iterates is a single page.   Similarly, a page is equivalent to lines; a page (lines) is an 
iteration--the part that iterates is a single line.  And so on with line (words). 
  
(ii)  A book consists of a front and back cover with pages in between.  Each page consists 
of lines of text; each line consists of words.  At the bottom of each page is a page 
number. 
 
 A first effort to draw the structure diagram for a book as described above might 
yield something like the following: 
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Page number

Front cover Back cover

Book

Page
*

Line
*

Word
*

 
 
 This structure diagram is incorrect, first of all, formally, that is grammatically:  
For, we may ask, what kind of component is a book?   It appears that a book is an 
iteration, since there is a part, page, that iterates.  On the other hand, book appears to be a 
sequence, since there are three consecutive parts--front cover, page, and back cover  But 
this is an impossible situation--a composite component must either be a sequence, a 
selection or an iteration--it cannot be a hybrid combination.  While a sequence does have 
three parts, none of them repeats--each occurs exactly once; While an iteration has a part 
that repeats, it has one and only one part.  
 
 A similar, formal error in the diagram occurs in the part that shows a line as 
having two parts, one of which iterates.  So, what kind of component is a line?  It cannot 
be an iteration, since it has two parts; it cannot be a sequence, since one part iterates.  It is 
an impossible construct that violates the grammar of structure diagram construction.   
 
 A third error is in the placement of page number.  From the diagram, a page 
number appears after all of the words in each line rather than after all lines have 
occurred.  
 
 The correct structure diagram for a book is as shown below: 
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Page number

Front cover Back cover

Book

Book body

Page
*

Line
*

Word *

Page body

      
 
 In the structure diagram, note that we have created a name for an iteration that is 
part of a sequence:  "Book body" is the part of a sequence that comes after the front cover 
but before the back cover; "book cover" is an iteration of page.  Likewise, "page body" is 
the part of a page that comes before the page number.   
 
 In general, we have to create a name for any composite component that is part of 
another component to satisfy the formal rules of structure diagram construction.. 
 
(iii)  An inventory transaction for a warehouse  
 
 Three types of transaction are defined:  a receipt of inventory, indicated by a code 
of "R"; a withdrawal of inventory, indicated by a code of "W"; and a transfer of 
inventory, indicated by a code of "T".  In the case of a receipt, the data included on the 
transaction is date of receipt, department code, item number, and quantity received; in the 
case of a withdrawal, the data included is date, department code, item number, and 
quantity withdrawn;  for a transfer, the data included is transaction date, department code 
issuing the inventory, item number and quantity issued, and department code to which the 
inventory is being transferred. 
 
 The data structure for the inventory transaction described above is shown in the 
Jackson structure diagram below: 
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inventory 
transaction

receipt withdrawal transfer° ° °

 
 

 The data structures for each transaction type are shown below: 
 

receipt

'R' date   dept code item #   quantity

  withdrawal

'W' date   dept code item #   quantity

  transfer

'T' date     dept code item #     quantity
 recipient 
 dept code

 
 
 Suppose we wish to process inventory transactions.  The  gross structure of the 
program component to process a transaction is evidently: 
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° °

process 
inventory 

 transaction

process 
receipt

process 
withdrawal

process 
transfer

°

 
 
 Note that the structure of the program component to process a customer 
transaction is identical to its data structure.  We simply use a verb in each node of the 
diagram to express the action to process the data.   
 
(iv)  Student registration in courses 
 
 Students in a university add or drop courses.  The student provides a code, 'A' for 
add or 'D' for DROP; his or her identification code; and the course code.  We are required 
to produce an enrollment activity log for each student.  The structure of a student's 
actions is shown below in the data model at left.  
 

*

ADD DROP
° °

ACTION

Data Structure

PRODUCE 
STUDENT 

ENROLLMENT 
REPORT 

*

PRODUCE 
DROP LINE

°

PRODUCE 
REPORT LINE

Program structure

   PRODUCE 
   ADD LINE

°

STUDENT

 
If we consider a program to display a student's enrollment activity, the program structure 
is evidently that shown to the right of the data model structure diagram.  Note the 
correspondence between the program structure and the data structure.  For a student, the 
program produces a report; for each student action, the program has a component to write 
a report line for that action; for an add action, the program has a component to  produce 
an add line, while for a drop action, there is a component to produce a drop line. 
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2.3 Program structure based on data structure 
 
 More fundamentally, examples (iii) and (iv) in the previous section illustrate the 
basis of Jackson methodology:  We model a problem first, using a data structure (model) 
to capture the problem structure.  The program structure is derived from the data model.  
Thus, program structure reflects problem structure.  The situation is shown in the 
diagram below:5 
 

Program

   Program
Structure

 Reading and 
Writing

Executable 
Operations

Data 
Structures

Task to be 
Performed

Problem  
Environment

Program structure based on data st ructure.

 
 
  The problem environment is that part of the real world that a computer system 
models.  In the case of student registration, the real world consists of students who add or 
drop courses.  Of course, there are constraints on a student's behavior:  he cannot add a 
course that doesn't exist; he can't drop a course he hasn't previously added; he can't add a 
course he is already enrolled in. 
 
 The computer system sees the world through the data structures that model a 
student's possible actions.  A serial stream of a student's actions over time--a student file-
                                                 
5  Jackson, 1975, p. 10 
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-contains a code of 'A' or 'D', the student's identification number, and the course 
identification number occur in each record.  The file is a model of the student's actions.  
Each record models an action of the student.    
 
 The program consists of a series of operations to be executed by the computer.  
Some of these are associated with moving around the data structures: we must read the 
next action record for a student and write the next report line.  Other actions are more 
directly associated with the tasks to be performed.  For example, we may need to keep 
track of how many actions a student made.  Each time a student adds or drops a course, 
there must be an operation "count := count + 1"; and the variable count must be properly 
initialized at the start and printed out at the end.   
   
 For both types of operation, we can associate the operation with a component of 
the data structures on which the program is based.   
 
 JSP is based on these design ideas.  We begin by modeling the problem and 
expressing the model in the form of one or more data structures.  From the data 
structures, we form a program structure.  We consider the tasks to be performed, and list 
the operations needed.  Then we allocate the operations to the appropriate component of 
the program structure.   
 
2.4 Elementary versus generalized components 
 
 The machine we use provides us with a set of elementary data types and a set of 
elementary operations.  In examining a problem, we may decide that we need data types 
and operations at a more abstract level in order to solve the problem.  In effect, using 
bottom-up design, we modify our initial machine, M' and create a new machine, M'' that 
has new elementary data types and operations.  For example, suppose we are 
programming in PASCAL.  Our programming environment has already modified our 
hardware to create what we may call a PASCAL-machine.  When we operate on a 
Boolean data type, we are not concerned with its machine representation, nor with the 
machine instructions to execute an assignment statement such as 
 
  b := true; 

 
where b is a Boolean variable.  Now, suppose we wish to add a matrix data type, together 
with operations for doing matrix arithmetic.  We may extend our programming language 
to include a data type, matrix, together with operations matadd, matsub, matmult and 
matdiv, together with matrix constants, matzero and matident to represent the zero and 
identity matrices.  In effect, we have extended our elementary operations by bottom-up 
design. 
 
 On the other hand, when we design a program with JSP, constructing the program 
structure from a data model of the problem, we build a tree structure such as the 
following: 
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P

P1 P2 P3

P11 P12 P31 P32
 

 
 In a tree structure, each component depends on one and only one component 
higher up in the hierarchy.  
Here again there are no generalized components.  A change to P2 will have no effect on 
any other component because each component has structural integrity. 
 
 In top-down design, the attention span of the designer is limited to a less complex 
problem than the original one.  Thus, problem P is dissected into subproblems P1, P2 and 
P3 and each of these is similarly dissected, resulting as before in a tree structure such as 
that given above.  We will see later that JSP is not a top-down method, but rather a 
constructive method of design.  But like top-down design, JSP creates a program 
structure in which each component preserves structural integrity. 
  
 Contrast this with the following picture that uses generalized components: 
 

P

P1 P2 P3

PA PB PC
 

 
 We may wonder how the design process was accomplished.   PC depends only on 
P2, but PA depends on both P1 and P, while PB depends on P1, P2 and P3.   What part of 
component PB will need to be changed if component P1 is changed?   Will this change 
affect the way PB works as a component of P3?   
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 Clearly, the design process was not top-down.  In some sense we have optimized 
since this design has only seven components, whereas our original had eight.  Our 
components are generalized.  We may have saved valuable storage space.  But in the 
process, we have lost design integrity, and increased the burden of future maintenance.  
 
 There are two lessons here:  First, we can design new, more general elementary 
operations using bottom-up design to transform our programming environment.  Second, 
created generalized components is an optimization technique; as will be discussed later, 
optimization should only be attempted after a correct design has been derived.  
 
 
Exercises 
 
(i)   Compose a single structure diagram that depicts the warehouse inventory transaction 
and each transaction type described in section 2.2 above. 
 
(ii)  (a)  Write a Pascal record structure for the warehouse transaction described in section 
2.2 above 
       (b)  Write a Pascal block of code to process a warehouse transaction described in 
section 2.2 above. 
 
(iii)  Draw a structure diagram for each of the following Pascal declarations: 
(a)  var  a : array[1..10] of integer; 
(b)  var b : array[1..10] of array[1..20] of real; 
(c)  var c : array[1..10] of array[1..20] of packed array[1..30] of char; 
 
(iv)   Draw a structure diagram for the file, employees, declared below: 
   

 const 
  maxraises = 50; 
  maxchildren = 25; 
 type 

alpha = packed array[1..20] of char; 
  date = record 
   month : (jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec); 
   day : 1..31; 
   year : integer 
   end; 
  sex = (male, female); 
 var 
  employees : file of record 
    lastname, firstname : alpha; 
    ssn : integer; 
    birthdate : date; 
    maritalstatus : (single, married, divorced, widowed); 
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    numberofraises : 1..maxraises; 
    salaryhistory : array[1..maxraises] of record 
      begindate : date; 
      salary : integer; 
      jobtitle : alpha; 
     end; 
    numberofchildren : 1..maxchildren; 
    child : array[1..maxchildren] of record 
      birthdate : date; 
      firstname : alpha; 
     end; 
    case s : sex of 
     male : (); 
     female : (maidenname : alpha); 
   end; 

 
(v)   For each of the following regular expressions below, interpret the regular expression 
as a data structure and draw a structure diagram. 
 
(a)     ((a*|b*)*c)|d   (b)      (a*)*|b|cd) 
(c)     ((a|b|cd)*)*   (d)      a|(b(cd)*) 
(e)     ab(c|d*)*   (f)      a*b*(c|d)* 
(g)     ((ab)*)*|cd   (h)      (a|bc|d*)* 
(i)      (a*b|cd*)*   (j)      ((a*)*(b|c)*)d 
(k)      (a|b)*c(d*)*   (l)     a(b|(cd*))* 
(m)    ab(c|d*)*   (n)     a*|(b*c*)|d 
(o)      (a*|b|c*)*d 
 
Example:   (ab|c)* 
 

               

 A

 B
*

C
° °

c

 a  b
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(vi)   For each of the regular expressions in (v), interpret the regular expression as a 
program.  Draw the corresponding structure diagram.  and give the equivalent Jackson 
structure text and pseudocode. 
 Example:  (ab|c)* 

 A

 B
*

C
° °

  do c

  do a   do b

Jackson structure text       Pseud ocode: 
 
    A    iter                          dowhile <cond1> 
       B    select                       if <cond2> 
            C    seq                           begin 
                  
          
            C    end                           end 
       B    alt                            else 
                  
 
       B    end                           endif 
    A    end                           endwhile   
 

Structure Diagram

do a; 
do b;

do a; 
do b;

do c; do c;

(vii)   For each of the regular expressions in (vi), write specifications for a program 
whose structure corresponds to the regular expression. 
  Example:  (ab|c)* 
"For lunch you may have either soup and crackers or a salad.  You may have as many 
servings of either as you wish."
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3.   JSP: Basic Design Method and the Single Read-ahead rule 
  
 3.1  Basic Design Method 
 
     The basic design method in JSP consists of the following steps: 
 
1   Draw a system diagram 
2   Draw a data structure for each input and output file 
3   Draw a single data structure based on correspondences between the input and output 
data structures; this data structure forms the basic program structure 
4   List the operations needed by the program,  For each, ask "Where does it belong (in 
what program part?)"  "How many times does it occur?"  Allocate the operations to the 
basic program structure. 
5   Translate the program structure into text, specifying the conditions for iteration and 
selection. 
 
 To illustrate the basic design technique, let's begin with a simple example--the 
multiplication table that we considered earlier.  A multiplication table is to be generated 
and printed.  The required output is: 
 
 1  
 2 4 
 3 6 9 
 4 8 12 16 
 ... ... ... ...  
 10 20 30 40 50 60 70 80 90 100 
 
The steps of the basic JSP design method for this example are:  
 
1  Draw system diagram. 
 
 In a system diagram we record what the inputs to and outputs from the program 
are.  In our example, we have no input.  The system diagram shows the program to 
generate multiplication table  producing the printed table as output: 
 

Generate 
multiplication 

 table
Printed 

table

 
 
In simple problems such as this one, we can omit showing this step explicitly, since the 
system diagram is more or less self-evident. 
 
2  Draw data structures 
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 We record our understanding of the problem environment by modeling it with 
suitable data structures.  Our understanding of the multiplication table is expressed in the 
data structure diagram below: 

Line

Table

Element
*

*

 
 
3  Form program structure based on the data structures from the previous step. 
 
 We have just one data structure.  The program structure is therefore: 

Produce 
Table

Produce 
Line

Produce 
Element

*

*

 
 
  
4  List and allocate operations 
 
 We note hat a line may contain either a number or a blank in any position.  
Representing a line by an array of integers, we will represent a blank by the integer value 
zero.  Using bottom-up design, we define the procedures clearline and displayline.  
 
 We list the elementary operations needed to perform the task, and answer for each 
operation, "How often is it executed?" and "In what program component(s) does it 
belong?"  The operations must be elementary statements of some programming language; 
we have chosen Pascal.  
 
operation how often? where?  
1  row-no := 1; once at start of program 
2  col-no := 1; once per line    in part that produces a line, at start  
3  row-no := row-no + 1; 9 times in part that produces a line  
4  col-no := col-no + 1;              (row-no)-1 per line in part that computes an element 
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5  line[col_no] := row_no*col_no once per element in part that computes an element 
 
Having listed the operations, we next allocate them to our basic program structure to 
obtain an elaborated program structure.  In order to accommodate the allocation of 
operations to components, we will almost always have to add new components, as we see 
in the structure diagram below, where we have added the components, "Produce Table 
Body" to allow for initializing row-no to 1, "Produce Line Body" to accommodate the 
operations before and after producing the elements in a line, and "produce-Element" to 
allow for incrementing the column prior to computing the next element.: 

 

Produce 
Table

Compute 
Element 

 Produce 
Line

Produce 
Line Body

*

   1

Produce 
Table Body

Clear Line Display Line

2

4

3

*

5
 

     
(5) Code program from structure diagram or structure text. 
 
 The structure text corresponding to the structure diagram above is given below: 

Produce-Table   seq 
 row-no := 1; 
 Produce-Line   iter <while row-no <> 10> 
  clearline; 
  Produce-Line-Body 
   col-no := 1; 
   Produce-Element  iter <while col-no <> row-no> 
        line[row_no] := col-no * row-no; 
        col-no := col-no + 1; 
   Produce-Element   end 
  Produce-Line-Body 
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  displayline; {print a line} 
 Produce-Line  end 
  row-no := row-no + 1; 
Produce-Table   end 
 

Note that we do not need to make explicit sequences within other components--thus, 
there is no structure text corresponding to the sequences "Produce Line ", "Produce-Line-
Body" and Produce-Element" 
 
 The program text,  which appears at the end of section 1.2, is easily coded from 
either the structure text or structure diagram.    
 
3.2 Single Read-ahead Rule 
 
 Our multiplication table example involved no reading, only writing the lines of 
our table.  The same output is produced each time.  Most interesting programs are based 
on reading data from a serial file whose contents vary from one execution of the program 
to the next, so that different output is generated.  We will see, moreover, that many 
awkward problems yield to treatment as problems in serial file processing, although at 
first glance they appear to be nothing of the kind. 
 
 Suppose we have a file, F, consisting of two records, T1 and T2.  It can be 
processed by a program with the structure below6:

                                                 
6  Adapted from Jackson [1], pp. 52-54. 
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P  seq 
  P1  seq 
  read; 
  processT1; 
 P1  end 
 P2   seq 
  read; 
  processT2; 
 P2   end 
P  end 

 
 Here we have allocated the read operations at the start of each component that 
processes a record.   
 
 Suppose our file specification changes so that we may or may not have a T1 
record at the start of the file, but will always have a T2 record.  The data structure is thus: 
 

File

Possible 
T1

T2

T1
°

 
  

 Since only the specification for the part that processes a T1 record has been 
changed, one would suppose we could modify our program by changing only the P1 
component.  But this is easier said than done.  Clearly, we cannot put the first read 
command in the component that processes a T1 record, because the condition test for the 
presence of a T1 record occurs at the start of the selection and depends on the T1 record 
already having been read.  Thus, the first read must occur before component T1.  The 
same would be true if we had an iteration, since the condition test comes at the start of 
the iteration.  So, we will put the initial read prior to any component that uses the record.  
The record will then be available for any component that may need it.   Putting the initial 
read at the beginning and leaving the second read operation at the start of the P2 
component, we obtain the program structure below:
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P  seq 
      read;  {1st record is available to component P1} 
   P1  seq 
 POSST1  sel  <T1 present> 
  processT1; 
 POSST1  or    <T1 absent> 
  ;  {null action} 
 POSST1  end  
   P1   end  
   P2  seq 
 read T2; 
 processT2; 
   P2  end 
P  end  

 
 Our initial read is prior to the condition test for T1.  If the T1 is absent, the T2 
record is already present--the read in component P2 is not needed and will read beyond 
the T2 record.  We only wish to read a second time if we have a T1 record.  So, we are 
led to position the second read immediately after the processing of T1 as shown below: 
 

P  seq 
 read;  {initial read} 
   P1  seq 
 POSST1  sel  <T1 present> 
  processT1; 
  read; {read-ahead} 
 POSST1  or    <T1 absent> 
  ; {null action} 
 POSST1  end  
   P1   end  
   P2  seq 
 processT2; 
   P2  end 
P  end  

 
 We can generalize our strategy above with following rule: 
 
Single Read-ahead rule:   Place the initial read immediately after opening a file, prior to 
any component that uses a record; place subsequent reads in the component that 
processes a record, immediately after the record has been processed.  
 
 The effect of the read-ahead rule is to have the next record (if any) available at the 
start of any component that may process it.  We will see later that we sometimes need to 
have more than one record available at the start of a component;  in this case we will 
need a multiple read-ahead rule. 
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3.2.1 Pascal file processing: non-text files 
 
 Let us consider the following problem:  A file of integers begins with a sequence 
of nonnegative integers whose sum we are asked to compute.    
 
 We might model our input file with the structure:  

 
File 
of 

integers

 
Nonnegative 

 integer

 
Other 

 integer

Integer
*

° °

 
 
But, this structure doesn't tell us what the problem states, namely, that the file all of the 
nonnegative integers come before any positive integer.  The structure we have shown 
only shows that any integer may be nonnegative or negative.  Clearly, the correct 
structure of the input file is: 

 
File 
of 

integers

 
Nonnegative 

 integers

 
Other 

 integers

Nonnegative 
integer

*
Other 
integer

*

  
 
The structure text corresponding to this appears to be the following: 
 

computeSum   seq 
 reset(f);    {f^ accesses the first integer, if any} 
 sum := 0; 
 Compute-nonnegative  iter <while not eof(f) and (f^>= 0)> 
    sum := sum + f^; {process the current integer} 
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    get(f);    {read-ahead} 
 Compute-nonnegative  end 
 Other-integers iter <while not eof(f)> 
  ; 
 Other-integers end 
 print "Sum= ", n; 
 close(f); 
computeSum   end 

 
We can delete the block "Other-integers" since we can ignore the rest of the file once a 
negative integer has been read.   
 
 Unfortunately, the compound condition 
 

not eof(f) and (f^>= 0) 
 
presents a difficulty because, when eof(f) is true, f^ becomes undefined, and the relation 
 

(f^>=0) 
 

cannot be evaluated.  In effect, we need to test first for the existence of a file component 
and, then, only if it exists, test its value.  To express the semantics exactly, we need to 
express the condition with an expression like: 

 
not eof(f) and (if not eof(f) then (f^>= 0) 

 
but Pascal does not have the expressive power to do so.  In order to avoid this difficulty, 
let's use a variable, n, instead of the buffer variable.  We would normally initialize n 
explicitly at the beginning of the program, but we will assume that our Pascal compiler 
initializes all integer variables for us.  Our structure text then becomes: 

 
computeSum   seq 
 reset(f);    {f^ accesses the first integer, if any}   
 sum := 0; 
 Compute-nonnegative  iter <while not eof(f) and (n >= 0)> 
   sum := sum + f^; {process the current integer} 
     get(f);    {read-ahead}    
 Compute-nonnegative  end 
 print "Sum= ", n; 
 close(f); 
computeSum   end 
 

We realize, however, that we have not assigned the first integer value to n .  We must 
assign f^ to n, assuming f^ is defined.  Similarly, we note that we must assign the new 
value of f^, if it exists, to n after the get(f) operation.   Incorporating these two changes, 
we are thus led to the structure text below: 
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computeSum   seq 
 reset(f);    {f^ accesses the first integer, if any} 
 sum := 0; 
 assign-n  sel  not eof(f) 
  n := f^; 
 assign-n  end  
 Compute-nonnegative  iter <while not eof(f) and (n >= 0)> 
  sum := sum + f^; {process the current integer} 
     get(f);    {read-ahead} 
  assign-n  sel  not eof(f) 
   n := f^; 
  assign-n  end 
 Compute-nonnegative  end 
 print "Sum= ", n; 
 close(f); 
computeSum   end 
 

 The Pascal program corresponding to the structure text given above is shown 
below: 
 

program computeSum (input, output); 
 const 
  fname = 'data place 52:Development:JSP.pas:fileOfIntegers'; 
 var 
  f: file of integer; 
  sum, n: integer; 
 
begin 
 reset(f, fname);   {first file component, if any, is accessible via f^} 
 sum := 0; 
 if not eof(f) then 
  n := f^;    {first file component, if any, assigned to n} 
 while not eof(f) and (n >= 0) do 
  begin 
   sum := sum + f^; {process current file component} 
   get(f);    {advance file pointer  to next file component} 
   if not eof(f) then 
    n := f^;  {assign next file component, if any, to n} 
  end; 
 writeln(' sum = ', sum); 
end. 
 

 Looking at the structure text, we note that the single read-ahead rule is followed:  
the reset(f) instruction opens the file; assignment of the buffer file variable, f^ to n 
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constitutes the initial read;  the get(f) together with the assignment of f^ to n constitute 
the read-ahead, and immediately follows the processing of the current file component. 
 
 We would prefer to use a higher-level form of input, replacing get(f) and the 
assignment of f^ to a variable with a procedure that combines the operations of advancing 
to the next file component and assigning it to a variable into a single command.  
 
 We may be used to the schema for Pascal file processing in which the read 
command is placed within the iteration, as in the program below which computes the sum 
of a file of integers: 
 

program computeSum (input, output); 
   const 
      fname = 'data place 52:Development:JSP.pas:fileOfIntegers'; 
   var 
 f: file of integer; 
 sum, n: integer; 
 
   begin 
   reset(f, fname); 
   sum := 0; 
   while not eof(f)  do 
      begin 
  read(f, n); 
  sum := sum + n 
    end; 
   writeln(' sum = ', sum) 
end. 
 

 In our problem to compute the sum of an iteration of nonnegative integers, we 
need an iteration with a compound condition:  

 
begin 
 reset(f, fname); 
    sum := 0; 
 while not eof(f) and (n >= 0)) do 
  begin 
   sum := sum + n; 
  end 

   
 Where do we place the read statements?  We cannot place the read statement 
within the iteration, because we need to know the value of n at its outset.  We try the 
following: 
 

begin 
 reset(f, fname); 
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 read(f, n); 
    sum := 0; 
 while not eof(f) and (n >= 0)) do 
  begin 
   sum := sum + n; 
   read(f, n) 
  end 

 
But we cannot place the read prior to the iteration, since if the file were empty, we would 
attempt to read past the end-of-file marker.  Even if the file were not empty, the code 
above is incorrect since:   
 (i)  If the file contains just one integer, it will never be processed.  The initial read 
will assign it to n,  but advance to the next file component, and cause eof(f) to be true at 
the start of the iteration; 
 (ii) The last file component will not be processed for the same reason.  The read-
ahead assigns the last value of f^ to n, and then advances the file buffer variable, setting 
eof(f) true before the last value has been processed.   
 
 Recall that the standard Pascal procedure, read(f, n), is equivalent to 
 

n:= f^; 
get(f); 

 
We note that in our structure text for the problem to compute the sum of nonnegative 
integers, the order of operations was reversed:  first we advanced the file buffer variable 
with get(f); then we assigned f^ to n, if it existed.   However, we cannot place a get(f) at 
the start of our program, since reset(f) is obligatory and achieves the same result.  So, in a 
higher-level read operation  using both operations, we must assign f^ and then advance 
the file buffer variable.  If we record the status of end-of-file before the file buffer 
variable is advanced, then we can be assured of processing the current value assigned to 
n, and avoid the difficulties noted in the schema using the standard Pascal read 
procedure.  We redefine the read procedure below:  
   

 type  
  intfile = file of integer; 
 var  eofbit: boolean; 
 ... 
 procedure xread(var f: intfile; var n: integer); 
 begin 
  eofbit := eof(f); 
  if not eofbit then 
   begin 
     n := f^; 
     get(f)  
   end 
 end 
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The global Boolean variable, eofbit, reflects the status of the file after the current file 
buffer component has been assigned to n, e.g. "read", but before the file buffer variable 
has been advanced.  Eofbit is used for any subsequent end-of-file testing instead of eof(f).  
The structure text incorporating the redefined read follows the single read ahead rule: 
  

computeSum   seq 
 reset(f); 
 xread(f, n);    {initial read} 
 sum := 0; 
 Compute-nonnegative  iter <while not eofbit and (n >= 0)> 
    sum := sum + n; 
    xread(f, n);    {read ahead} 
 Compute-nonnegative  end 
 print "Sum= ", n; 
 close(f); 
computeSum   end 

 
Note that: 
 (i)  We can have an initial read prior to the iteration since read will not advance 
beyond the end-of-file marker; 
 (ii)  If there is but one component in the file, eofbit is false following the initial 
read, and the current value of the component will be processed within the iteration; the 
invocation of xread following processing will assign true to eofbit;  
 (iii) Immediately after the last record is read, eofbit is false but eof(f) is true.  
Thus, the last record will be processed. 
 
 The Pascal program corresponding to the structure text is shown below: 
 

program computeSum (input, output); 
 const 
      fname = 'data place 52:Development:JSP.pas:fileOfIntegers'; 
 type  
  intfile = file of integer; 
 var 
  f: intfile; 
  eofbit: boolean; 
  sum, n: integer; 
 
  procedure xread(var f: intfile; var n: integer); 
 begin 
  eofbit := eof(f) 
  if not eof(f) then  
  begin 
   n := f^; 
   get(f)  
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  end; 
 end 
 
begin 
   reset(f, fname); 
   xread(f, n);  
   sum := 0; 
   while not eofbit and (n >= 0) do 
      begin 
   sum := sum + n; 
   xread(f, n); 
    end; 
   writeln(' sum = ', sum) 
end. 

 
 Replacing the standard Pascal read procedure allows us to apply the single read-
ahead rule, derived from the basic logic of condition testing prior to selection or iteration 
components, as a general solution for file processing.  The details of the xread procedure, 
the result of bottom-up design, are properly hidden from the program--they are outside of 
the boundary of the model on which the program is based. 
 
 There are many cases where the standard Pascal schema--placing the reset 
procedure at the start of a program but placing the standard read procedure after the eof 
test as the first statement of the iterated component--works fine.  But it fails in cases 
where there is a condition at the head of the iteration that depends on the current record's 
contents.  Throughout this text, we will therefore enforce the single read-ahead rule. 
 
 Note:  In COBOL, we have no such difficulties.  The single read-ahead rule can 
be applied perfectly, as shown in the segment below for the problem to compute the sum 
of an iteration of nonnegative integers: 
 

WORKING-STORAGE SECTION. 
... 
 02  IN-EOF PIC X VALUE SPACE. 
  88  IN-EOF VALUE 'E'. 
... 
PROCEDURE DIVISION. 
PROCFILE. 
 OPEN INFILE. 
 READ INFILE AT END MOVE 'E' TO IN-EOF. 
 MOVE ZERO TO SUM. 
 PERFORM COMPUTE-SUM UNTIL ((IN-EOF) OR (N .GE. 0)). 
 DISPLAY "SUM =", SUM. 
 CLOSE INFILE. 
 STOP RUN. 
COMPUTE-SUM. 
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 ADD N TO SUM GIVING SUM. 
 READ INFILE AT END MOVE 'E' TO IN-EOF. 
  

3.2.2 Pascal file processing: textfiles 
 
 As another example, let us design a program to read a textfile consisting of some 
text and output each word of the input file as a separate line of output.  A word is defined 
as any sequence of letters and apostrophes.  
 
 We may be tempted to begin programming by using an existing  program, known 
to work correctly.  This technique, used by many experienced programmers, is analogous 
to the method of fixed point iteration: like the mathematical method, our first 
approximation to the solution will be a guess, which we will subsequently successively 
refine.  We take as our first approximation the standard structure text below for copying 
an input text file to an output file: 

 
 reset(f);  rewrite(g); 

begin 
 while not eof(f) do 
 begin 
  while not eoln(f) do 
  begin 
   read(f, ch); 
   write(g, ch); 
  end 
  writeln(g); readln(f); 
 end 
 close(f); 
 close(g) 
end  

 
 In the structure text, the read procedure refers to the standard Pascal read 
procedure for textfiles.    
 
 The input file consists of lines of text.  Each line consists of words alternating 
with punctuation.  After some experimentation, we arrive at the following input file 
structure: 
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Word Punctuation
° °

Textfile

Word or 
punctuation

Word 
character

*

Punctuation 
character

*

*

Line
*

 
 
 Within each line we have an iteration of word-characters or an iteration of 
punctuation-characters.  As our first modification, we try the following:  
 
 reset(f);  rewrite(g); 

begin 
 while not eof(f) do 
 begin 
  read(f, ch); 
  if (ch in word-char) then 
   while not eoln(f) and (ch in word-char) do 
   begin     (read & write a word} 
    write(g, ch); 
    read(f, ch) 
   end 
   ... 
   ... 
  else      (skip past punctuation} 
  ... 
  ... 
  end 
 close(f); 
 close(g) 
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end  
 

 We must place the initial read before the condition test for a word-character, and 
we reverse the read and write within the iteration.  This gives the familiar single read-
ahead pattern.  But, of course, with the standard Pascal read procedure, a quick analysis 
shows that this schema will not work: 
 (1)  If the input file consisted of the single word, "a", eoln will be true following 
the initial read, and so we will not process our single character file;   
 (2)  The last character in the file won't be processed for similar reasons. 
 
 Evidently, as we saw in the previous section, we want to test for end-of-line after 
f^ is assigned to ch, but before advancing to the next file component.  We could redefine 
our read procedure accordingly, and proceed further in our analysis.  This is left as an 
exercise. 
 
 Instead, we will start afresh using JSP.  The design steps are shown below:   
 
1   Draw a system diagram 
  

Produce 
Output File

Output 
File   Textfile

 
 
2   Draw a data structure for each input and output file 
 
 After discussing the problem with its originator, we 
satisfy ourselves that we need not concern ourselves with the line structure of the input--
there won't be any need to keep track of the number of words per line in the input file, for 
example.  Thus, we will model the problem without reference to the line structure of the 
input textfile.  Instead, we will do some bottom-up design and design a procedure to read 
the next character from our input file.  Since the specification requires one word per line 
on the output file, we must model the output file explicitly as an iteration of lines. 
   
 The structure of the input and output files are shown 
below together with correspondences between input and output components: 
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* *
Word Punctuation

° °

Textfile Output 
File

Line
*

Word End-of-line 
separator

Textfile of words
Output file  
one word per line

Word or 
punctuation

Word 
character

*

Punctuation 
character

*

*

 
 
  There is one output file for each input textfile; each 
word on the output file corresponds to a word in the input file; preceding and following 
each word, there may be one or more punctuation characters.    
  
3   Draw a single data structure based on correspondences between the input and output 
data structures; this data structure forms the basic program structure which is shown 
below: 
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Consume 
a word; 

 produce a line; 

Write output 
line

Consume 
textfile; 

  produce output

*

   Consume word; 
 Produce line

C-character; 
P-character

*

Consume  
punctuation

Consume 
punct character

*

° °

C-word  
P-word

 
 
 

 
4   List the operations needed by the program,  For each, ask "Where does it belong (in 
what program part?)"  "How many times does it occur?"   Allocate the operations to the 
basic program structure. 
 
operation how often where? 
 
1  reset(infile); once at start  
2  rewrite(outfile); once at start 
3  xread(infile,ch); n times, where n =      immediately after reset;  in 
  # words in textfile component that consumes a word;   
 in component that consumes   
 punctuation characters 
4  write(outfile, ch); once per word in part that outputs a character 
5  writeln; once per word     in part that outputs a line, after 
  writing a word 
6  close(textfile); once at end of program 
7  close(outfile); once at end of program 
 
The structure text corresponding to the program structure is shown below: 
 

C-textfile   seq  
 reset(infile); 
   xread(infile, ch); 
    rewrite(g); 
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    C-textfile-body   iter  <while not eof> 
  C-word-or-punct   sel  <word-char> 
    C-word-char iter <while not eof and in word-char>   
        write(g, ch); 
        xread(infile, ch); 
         C-word-char  end 
         writeln(g); 
  C-word-or-punct alt <while not eof and not in word-char> 
    C-punct-char  iter <while not eofbit and not in word-char> 
         xread(infile, ch); 
    C-punct  end 
  C-word-or-punct end 
 C-textfile-body   end 
 close(infile); 
 close(g); 
C-textfile   end 

  
 Our structure text is intelligible:  The component, C-word, consumes and outputs 
a word.  The operation, writeln(g), skips to the next line, immediately after a word has 
been consumed and output.  There is a component that skips past the punctuation 
between words. 
 
 In our structure text, the Pascal read procedure has been redefined using bottom-
up-design to test for end-of-file and end-of-line after ch has been assigned the value of f^, 
if it exists, but before advancing to the next file component.  The redefined procedure is 
shown below: 
 

procedure xread(var f: text; var  ch: integer);   {read a character from a text file} 
 begin 
  eofbit := eof(f); 
  if not eofbit then 
   begin 
    eolnbit := eoln(f); 
    if not eolnbit then 
     begin 
      ch := f^; 
      get(f) 
     end 
    else 
     begin 
      ch := ' ';     {if end-of-line, set ch to a blank indicating end  
              {of word}       
      readln(f);    {and skip to beginning of next line} 
     end; 
   end; 
 end; 
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 In our xread procedure, in fact, we don't need to model the line structure of the 
input text file.  We could as well use the following procedure, akin to our procedure to 
read from a non text file: 
 

procedure xread(var f: text; var  ch: integer);   {read a character from a text file} 
begin 
 eofbit := eof(f); 
 if not eofbit then 
  begin 
   ch := f^; 
   get(f)  
  end 
end; 
  

 
5   Translate the program structure into text, specifying the conditions for iteration and 
selection.  The Pascal program is shown below; the text of the xread procedure, is 
omitted, and the program writes to the standard output file: 
 

program TextfileofWords (input, output); 
 const 
  infilename = 'data place 52:Development:JSP.pas:TextfileofWords.txt'; 
 var 
  f: text; 
  ch: char; 
  eofbit, eolnbit: boolean; 
 
begin 
 reset(f, infilename); 
 xread(f,ch);       {initial read-ahead} 
 while not eofbit do 
  begin 
   if (ch in ['a'..'z', 'A'..'Z', '''']) then {word} 
    begin 
     while not eofbit and (ch in ['a'..'z', 'A'..'Z', '''']) do 
      begin   {consume and output a word} 
       write(ch); 
       xread(f, ch) 
      end; 
     writeln   {skip to beginning of next line} 
    end 
   else 
    while not eofbit and not (ch in ['a'..'z', 'A'..'Z', '''']) do 
     xread(f, ch);         {skip punctuation} 
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  end; 
 close(f); 
end.   {program} 

 
 Note:  In the programming language C, the handling 
of text files is much simpler than in Pascal, and the single read-ahead rule can be applied 
without difficulty, as shown in the program below to copy an input file to an output file 
character-by-character: 
 

#include <stdio.h> 
/* copy input to output */ 
{ 
 int c; 
 
 c = getchar();  /*  initial read */ 
 while (c != EOF)  { 
  putchar(c); 
  c = getchar(); /* read ahead */ 
 } 
} 

 
 

Ex.  (iii)  A file consists of a sequence of positive integers followed by a sequence of 
negative integers.  Compute the sum of both sequences. Write the program assuming (a) 
input file of integers, and (b) input text file.  How does the read procedure you define 
differ in the two cases? 
 
(iv)  A file contains sets of data.  Each set consists of a header record, followed by a 
number of data records.  Each header record contains an integer that tells how many data 
records will follow.  Each data record contains two real numbers.  Write each set of 
data as a separate output file with the name, FILEn, where n is a consecutively numbered 
integer (1,2,3,...). 
 
(v)  A file consists of sets of data.  Each set consists of a header record followed by a 
number of data records, as in problem (i) above.  Each data record contains three real 
numbers, and the three sets of real numbers form three distinct data sets.  Write each data 
set to a separate output file, putting the 1st number from an input data record to the 1st 
file, the 2nd number from an input data record to the 2nd file, and the 3rd number from 
an input data record to the 3rd file. (Thus, each output file contains data records 
consisting of just one real number.)  Name each output file with the name, FILEmn, 
where m = a consecutively numbered data set (1,2,3,...) and n is 0,1 or 2 depending on 
whether a data record contains the 1st, 2nd or 3rd input real number on the input file. 
 
(vi) Using the schema below to input a textfile using the standard read(f, ch) 
procedure, try to rewrite the program to produce lines of output containing one word per 
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line from an input file of text.  Is the program intelligible?   Is there a component that 
reads and writes a word? 
 
 reset(f);  rewrite(g); 

begin 
 while not eof(f) do 
 begin 
  read(f, ch); 
  if (ch in word-char) then 
   while not eoln(f) and (ch in word-char) do 
   begin     (read & write a word} 
    write(g, ch); 
    read(f, ch) 
   end 
  ... 
  else      (skip past punctuation} 
  ... 
  ... 
 end 
 close(f); 
 close(g) 
end  
 

 
(vii) In addition to outputting words from an input text file, one per output line, your 
program should report a count of the number of words per line and the number of 
characters per word.  Using JSP,  rewrite the program, modeling the line structure of both 
input and output text files.  
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4. Basic Design Method: Multiple Data Structures 
 
 Let us continue to discuss the basic design method introduced in the last chapter, 
concentrating on situations where multiple inputs and/or output files are used, and where 
correspondences in these structures must be examined in constructing the program 
structure. 
 
4.1 Processing record sets in a sequential file 
 
 A problem that occurs frequently in data processing involves accumulating totals 
in a serial file for a set of records having the same record identifier.  Frequently, 
programs are based on the incorrect structure shown below: 
 

Record
*

°Control break

File

° Not a control  
break  

 
The resulting program is more complex, harder to understand, and certainly harder to 
maintain than a program based on the correct structure, as the next two sections recount. 
 
4.1.1 Getting It Wrong--A Cautionary Tale7 
 
  
 Consider the following problem:  A warehouse records a transaction for every 
item received into or issued out of the warehouse.  At the end of the day, the transaction 
file is sorted by item number, and a "Daily Net Movement Summary" showing the net 
movement of each item into or out of the warehouse is produced.  The format is shown 
below: 
 
   Daily Net Movement Summary 
 
   A12345     40 
   A23456   -30 
   .......... 
   Z13579     25 
 

                                                 
7 This section is adapted from an article with the same title by Michael Jackson found in Cameron [1] 
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   End Summary 
 
 Experienced programmers have seen this type of problem, and even those who 
don't know about it can find its solution in that very fine book, Principles of Program 
Design by Michael A. Jackson! 
  
 This story is about a novice programmer who hadn't seen the problem before.   He 
sketched out a top-down solution to the program and arrived at the following 
pseudocode:  
 

begin 
 reset transfile;  read transfile; writeln(' Daily Net Movement Summary'); 
 while not end-of-file do 
  if new group then 
   end old group 
   start new group 
  else 
   process record 
  endif 
  read transfile 
 endwhile 
 writeln('End Summary'); 
 close file 
end 

 
 Of course, some of you more experienced programmers will see immediately that 
something isn't quite right.  Our novice, however, proceeded to code the program in 
Pascal and run it.   
 
The program produced the following output:  
 
   Daily Net Movement Summary 
         0 
   A12345   40 
   A23456 -30 
   .......... 
   Z13579  25 
   End Summary 
 
What was that first line containing 0, the novice wondered?  After a little thought, he 
realized it was due to ending an old group before the first group.  He had heard 
something about a first-time-switch from a colleague down the corridor, so he added the 
following fix to his original structured code: 

 
begin 
 reset transfile;  read transfile; writeln(' Daily Net Movement Summary'); 
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 sw <-- false; 
 while not end-of-file do 
  if new group then 
   if (sw) then  
    end old group 
   else sw <--true 
   start new group 
  else 
   process record 
  endif 
  read transfile 
 endwhile 
 writeln('End Summary'); 
 close file 
end 
 

 
 Running the program again, he was gratified to see the first line disappear from 
the output, and soon after, the program was put into production.  After a few weeks, a 
clerk from the user department came to our programmer and said, "Look, there's no total 
for the last group!"  Of course, you experienced programmers would have known this, 
since initially the end-group and start-group operations had been paired, but the 
introduction of the first time switch removed one of the end-groups.  As a result, there 
was a group started but not ended, and indeed, this was the last group in the file.  So our 
novice programmer made the obvious correction, arriving at the code shown below: 
 

begin 
 reset transfile;  read transfile; writeln(' Daily Net Movement Summary'); 
 sw <-- false; 
 while not end-of-file do 
  if new group then 
   if (sw) then  
    end old group 
   else sw <--true 
   start new group 
  else 
   process record 
  endif 
  read transfile 
 endwhile 
 end last group 
 writeln('End Summary') 
 close file 
end 
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Pretty soon, on Thanksgiving day, in fact, the program was run, and the output produced 
was quite unexpected: 
 
   Daily Net Movement Summary 
 
         0 

    
   End Summary 
 
 Obviously, something was wrong--the unwelcome 0 line had reappeared--why?  
Then, it became clear.  There had been no transactions, and so there were no groups.  The 
mystery line was the result of ending the last group--only there wasn't any last group. 
 
 Our novice programmer was tempted to do something with the first-time switch, 
sw, but, having heard something about "defensive programming" decided against this 
strategy.  Defensive programming appears to be the theory, that, when making changes to 
a program, whose possible side effects aren't understood, one ought not to tamper with 
parts of the program that appear to work. So, our novice decided to add a second switch, 
sw2, as shown below: 
 

begin 
 reset transfile;  read transfile; writeln(' Daily Net Movement Summary'); 
 sw <-- false;  sw2 <-- false; 
 while not end-of-file do 
  if new group then 
   if (sw) then  
    end old group 
   else sw <--true 
   start new group 
  else 
   process record 
   sw2<--true 
  endif 
  read transfile 
 endwhile 
 if (sw2) then 
  end last group 
 writeln('End Summary') 
 close file 
end 

 
After recompiling his program, our programmer ran it against an empty transaction file 
with the desired result: 
 
   Daily Net Movement Summary 
   End Summary 
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Clearly, our programmer's trials were at an end.  The program ran again for the next 18 
months. 
 
 Then one day, a clerk from the user department came in and said, "Look, the last 
group has been left off the printout again!"  The diagnosis was easy.  An old, incorrect 
version of the program had been run.  But, a couple of days of intensive detective work 
showed that this was not the case--the correct version of the program had been run!   The 
only possibility was a transient hardware error or some random problem with the 
operating system.   
 
 Indeed, this seemed to have been one of those rare occasions.  After all, the 
problem hadn't occurred before--at least, not since the 'end last group' fix had been added 
to the program. 
 
 Then, a funny thing happened.  The production clerk came in one day, and said to 
our programmer: "Do you remember that last group that was left off the printout?  Well, I 
got hold of the transaction input file, and found there were 843 transactions."  "So what?" 
replied the programmer.  "Well, there were 842 group totals on the printout."  "I don't see 
that that's relevant", said the programmer, "but thank you for mentioning it to me." 
 
 That night he took the program home, and studied it carefully.  Suddenly it 
dawned on him!  Of course!  If there were 843 transactions and 843 totals, then each 
group contained exactly one record:  so the condition 'new group' would be true on every 
card, and it would always be the 'if'; that was executed and never the 'else'.  But the 
instruction to set sw2 to true was only in the 'else' clause!  So sw2 was never set to true, 
and the last group was never ended. 
 
 Our programmer, having diagnosed the problem, solved it easily by adding a 
statement to set sw2 true to the first clause of the 'if-else' as shown below: 
 

begin 
 reset transfile;  read transfile; writeln(' Daily Net Movement Summary'); 
 sw <-- false;  sw2 <-- false; 
 while not end-of-file do 
  if new group then 
   if (sw) then  
    end old group 
   else sw <--true 
   start new group 
   sw2<--true 
  else 
   process record 
   sw2<--true 
  endif 
  read transfile 
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 endwhile 
 if (sw2) then 
  end last group 
 writeln('End Summary') 
 close file 
end 
 

 Obviously, the program is now perfect and correct.  But, of course, it has only 
been running for three months in its new form, and I will keep you posted if there are any 
new surprises. 
 

* * * * * 
 

And the moral?  It's this:  the structure of the program produced by our novice 
programmer is one we often see: 

 

Record
*

°Control break

File

° Not a control  
break  

 
 

and this structure is wrong.  Not inferior; not inelegant; just plain wrong.  The difficulties 
were all caused by the 'end group' instructions.  Now, how often should we end a group?  
Why, once per group!  Where, in this program, is there a component that processes each 
group?  There is no such component, and therefore the 'end group' instructions cannot be 
correctly allocated to the program structure.  That's what all the difficulty was about. 
 
 Of course, all of us experienced programmers never make this kind of mistake.  
But, I know many very experienced programmers who make just this sort of mistake on 
bigger and more obscure programs; this type of mistake--having the wrong program 
structure--occurs frequently! 
 
 A second moral is this:  Avoid first time switches like the plague!  Each adds two 
possibilities to consider, and a program with n switches adds 2n  possibilities, and 
becomes quite unintelligible.  First time switches are usually introduced because a 
program's structure is not correctly understood--they thus conceal rather than make 
explicit a program's true structure.  
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4.1.2 Getting It Right 
 
 Here is how to design the program correctly using JSP: 
 
1   Draw a system diagram 
 
 When the system diagram is self-evident, we can omit it.  We do so here. 
 
2   The structure diagram below shows the input and output structures together with their 
correspondences:  
 

Transaction 
file

     Transaction  
   group

Transaction
*

Report

Title line
  

Report body
 

End line

     
     Total line

   *

     *

Input file  Report file

 
 
There is one "Daily Net Movement Summary Report" per daily transaction file; for each 
group of transactions recording receipts and issues for a single item, one report line is 
produced. 
 
3   The single program structure based on correspondences between the input and output 
data structures is shown below: 
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*
 Consume records; 
 accumulate net 
 movement

Consume daily 
transaction file; 
Produce report

Consume file 
body;  
Produce 
report body

Close file; 
Display 

ending line
Open file; 
Display 
report title

 Consume group; 
 Produce report 
 line

*

 
  
 
4   The operations needed by the program are listed and allocated to the basic program 
structure below: 
 
operation where? how often? 
 
1  reset(f) once at start 
2  writeln(' Net Daily Movement Summary')   
 once at start 
3  writeln(' End Summary') once at end 
4  close(f) once at end 
5  groupid := rec.itemno once/group in component to process a group 
6  netqty := 0 once/group in component to process a group 
7  netqty := netqty + rec.qty once/transaction in component to process a record 
8  xread(f,rec) once per record at start; in component that   
 processes each record 
9  write(' ', groupid, netqty) once per group in component to produce a report  
 line 
10 writeln once after title;  at start; at end 
 once before ending line   
 
 The allocation of these operations to the basic program structure to form an 
elaborated program structure is shown below: 
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      10

 
 

 
5   Finally, the translation of the program structure into structure text, with the conditions 
for iteration and selection specified, is shown below: 
 

P-netmovement   seq  
 reset(infile); 
   xread(infile, rec); 
 writeln(' Daily Net Movement Summary'); 
 writeln; 
      C-file-body   iter  <while not eofbit> 
  C-group  seq  
   groupid := rec.itemno; 
   netqty := 0; 
   C-groupbody   iter <while not eofbit and (groupid = rec.itemno)> 
   netqty := netqty + rec.qty; 
    xread(infile, rec); 
        C-groupbody  end 
        writeln(' ', groupid, netqty); 
  C-group end 
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 C-file-body   end 
 close(infile); 
 writeln; 
 writeln(' End Summary') 
P-netmovement  end 

 
 The translation of the structure text into Pascal with a suitably redefined read 
procedure is left as an exercise. 
 
4.2 Group-id Rule 
 
 The accumulation of totals over a record set based on a record identifier on which 
the records are sorted is a typical example of hierarchical record processing.  Each level 
of the hierarchy contains an iteration of records.  The following design rule applies: 
 

Group-id Rule:   If a structure contains a component that is a 
group of records all having the same value of a (usually sorted) 
identifier, then there must be an operation that stores the value 
of the identifier.  This operation should be allocated once per 
group, at the beginning of the group. 

 
 In the structure text to produce the "Daily Net Movement Summary", the group-id 
variable stores the value of each group, and is allocated at the start of the component to 
process a group in accordance with the group-id rule. 
 
4.3 Collating 
 
 A class of data processing problems concerns the correspondence among input 
files rather than between input and output files.  Collating, or "matching" sequential files 
is such a problem. 
 
 Consider the following problem from census processing involving three files, 
each sorted by the same geographic identifier or geocode, a composite key consisting of 
concatenated country, province, district, and village identifiers.  The first file is a 
reference file containing the set of village identifiers together with their names; the 
second file contains population data for each village, while the third data file contains 
housing data for each village.  The problem is to produce a listing of geocodes classified 
into the following four types: 
 
 1 -  geocodes from the reference file with no corresponding data on either 
population or housing file; 
 2 - geocodes with matching population and housing data; 
 3 - geocodes with matching population data (but no housing data); 
 4 - geocodes with matching housing data (but no population) data 
 
 Each of our files has the same structure, namely: 
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File

Rec
*

 
 
But what are the correspondences on which our program structure is based?  Clearly, 
each type in our listing requires that we examine the geographic code in all three files.  
The program component to process any of the types in the listing doesn't correspond to 
any single file structure.  The program structure may be depicted as shown below: 
 

C-files; 
P-listing

C-georec
*

P-type 1 P-type 2 P-type 3 P-type 4
° ° ° °

 
 
Translation of this program structure gives the following structure text:   
 

P-geomatch   seq  
 reset(georef); reset(pop); reset(hous); 
   readgeo(georef, georec); readpop(pop(pop, poprec); readhous(hous, housrec); 
 writeln(' Geographic code analysis  '); 
 writeln; 
      C-georef   iter  <while not eofref)> 
  C-type  sel  < georec.geocode = poprec.geocode=housrec.geocode >  
   type := 1; 
   writeln(' ', type, ' '; georec.geocode, georec.geoname, poprec.pop,  
   housrec.hhlds); 
   readpop(pop, poprec); readhous(hous, housrec); 
  C-type  alt  <  poprec.geocode = georec.geocode < housrec.geocode >  
   type := 2; 
   writeln(' ', type, ' ', georec.geocode, georec.geoname, poprec.pop); 
   readpop(pop, poprec); 
  C-type  alt  <  poprec.geocode > georec.geocode = housrec.geocode >  
  type := 3; 
   writeln(' ', type, ' ', georec.geocode, georec.geoname, housrec.hhlds); 

 63



   readhous(hous, housrec); 
  C-type  alt  <  poprec.geocode > georec.geocode < housrec.geocode >  
  type := 4; 
   writeln(' ', type, ' ', georec.geocode, georec.geoname); 
  C-type  end  
  readgeo(georef); 
 C-georef end 
 close(georef); close(pop); close(hous); 
 writeln; 
 writeln(' End Listing') 
P-geomatch  end 

 
 Note that the single read-ahead rule has been used;  in particular, note the test of 
the global variable, eofrec, instead of eof(georef) in the iteration over the village 
reference file.  The Pascal program is shown below: 

 
program geomatch (input, output); 
const 
 geoname = 'data place 52:Development:JSP.pas:geo'; 
 popname = 'data place 52:Development:JSP.pas:pop'; 
 housname = 'data place 52:Development:JSP.pas:hous'; 
type 
   geocode = packed array[1..10] of char; 
   refrec = record 
      refcode: geocode; 
      refname: packed array[1..35] of char; 
     end; 
   poprec = record 
     refcode: geocode; 
     persons: integer; 
     end; 
   housrec = record 
     refcode: geocode; 
     hhlds: integer; 
     end; 
   reff = file of refrec; 
   popf = file of poprec; 
   housf = file of housrec; 
 
 var 
   matchtype: integer; 
   eofref, eofpop, eofhous: boolean; 
   georef: reff; 
   pop: popf; 
   hous: housf; 
   recref: refrec; 
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   recpop: poprec; 
  rechous: housrec; 
 
 procedure readgeo (var georef: reff; var recref: refrec); 
 begin 
  eofref := eof(georef); 
  if not eof(georef) then 
   read(georef, recref); 
 end; 
 
 procedure readpop (var popref: popf; var recpop: poprec); 
 begin 
   eofpop := eof(pop); 
   if not eof(pop) then 
     read(pop, recpop); 
 end; 
 
 procedure readhous (var housref: housf; var rechous: housrec); 
 begin 
   eofhous := eof(hous); 
   if not eof(hous) then 
     read(hous, rechous); 
 end; 
 
begin 
  reset(georef, geoname); 
  reset(pop, popname); 
  reset(hous, housname); 
  readgeo(georef, recref); 
  readpop(pop, recpop); 
  readhous(hous, rechous); 
  writeln(' Geographic code analysis  '); 
  writeln; 
 while not eofref do 
    begin 
   if (recref.refcode = recpop.refcode) and 
    (recpop.refcode = rechous.refcode) then 
       begin 
        matchtype := 1; 
        writeln(' ', matchtype, ' ', recref.refcode, recref.refname,    
   recpop.persons, rechous.hhlds); 
        readpop(pop, recpop); 
        readhous(hous, rechous); 
       end 
      else if (recpop.refcode = recref.refcode)  
    and (recref.refcode < rechous.refcode) then 
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        begin 
         matchtype := 2; 
         writeln(' ', matchtype, ' ', recref.refcode, recref.refname,   
    recpop.persons); 
         readpop(pop, recpop); 
        end 
       else if (recpop.refcode > recref.refcode)  
     and (recref.refcode = rechous.refcode) then 
         begin 
          matchtype := 3; 
          writeln(' ', matchtype, ' ', recref.refcode, recref.refname,   
     rechous.hhlds); 
          readhous(hous, rechous); 
         end 
        else if (recpop.refcode > recref.refcode)  
      and (recref.refcode < rechous.refcode) then 
          begin 
           matchtype := 4; 
           writeln(' ', matchtype, ' ', recref.refcode,    
      recref.refname); 
          end; 
     readgeo(georef, recref); 
   end; 
  close(georef); 
  close(pop); 
  close(hous); 
  writeln; 
  writeln(' End Listing') 
end. 
 

Exercises 
 
(i) Translate the structure text for the net movement summary report into Pascal, 
redefining a suitable read procedure to process the input transaction file. 
 
  In exercises (ii)-(iv),  one person or team uses JSP to design a program 
corresponding to the initial specifications given; then, to produce the modifications given 
to the initial problem, a second person or team modifies the initial design, producing a 
modified report.  
 
(ii)   A student grade file contains the grades for students taking courses at the university.  
Each record contains student-id, student name, course-id, course name and grade.  The 
file is sorted by course-id within student-id.  A report, "Student Grades", is desired that 
contains for each student his or her grades and the average for all the courses taken 
during the semester.  In addition, the report prints a summary containing the number of 
students in all courses, and average grade for all courses. 
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     Modification:  Each record contains a code that indicates the subject that a student is 
specializing in. The file is sorted by course-id within student-id within faculty-id.  
Produce a summary line for each faculty id containing the number of students 
specializing in the faculty and their average grade. 
 
(iii)   A population census file is sorted by person-id within household-id.  Each record 
contains household-id, person-id and gender coded 1 for female and 2 for male.  Print 
report lines containing the household-id and the number of males and females in each 
household.  Print a summary line with the number of males, females and households in 
the file, together with the average household size.  
     Modification: Each record also includes enumeration-area (EA) identification code, 
and the file is sorted by person-id within household-id within enumeration area.  Modify 
the program to include in the report the number of males and females in each EA, 
together with average household size in each EA. 
 
(iv)   A program has to process a single input file and produce one report.  The input file 
is sorted by customer-id.  Each record contains a product identifier and quantity field, 
which indicates how much of the product that a customer has ordered.  There are two 
types of customer, discount customers and normal customers, distinguished by a code of 
"D" or "N" in a record.  A database can be directly accessed to give the cost per unit of a 
product 
based on the product identifier code and the outstanding debt of a customer, based on the 
customer-id code.  "D" type records also have a discount field, that represents the 
percentage discount the customer gets on all items. 
     The summary report consists of one line for each normal customer, two lines for each 
discount customer, and two overall summary lines.  The normal customer summary line 
has the total value of the transactions, the old and the new debt.  The first 
line of a discount summary has the total value of the transactions, the discount level, and 
the discounted value.  The second line has the old debt and the new debt.  The overall 
summary totals the debts and values. 
     Modification: Each header record contains an area code in addition to customer-id, 
and the input is sorted on customer-id within area code.  Modify the previous report to 
include a 
summary line for each area detailing the total value and total discounted value of the 
transactions in that area. 
 
 Exercises (v)-(vii) could be solved profitably using paired-problem-solving. 
 
(v) [Part 1]  In the collating problem discussed in Section 4.2, show the structure text and 
Pascal code using the standard Pascal read procedure.  Discuss the resulting program in 
terms of its simplicity and intelligibility. 
[Part 2]  Now suppose that the population and housing files each could contain a group of 
data records for any village code.  Design a program using JSP to produce the required 
listing of four types.   
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(vi)   [Part 1] In the collating problem discussed in Section 4.2, suppose that the village 
reference file may contain geographic coding errors:  in other words, there may be 
unmatched geocodes on both the population and housing files.  Write the structure 
diagram and structure text for a program to produce a listing of geocodes classified into 
the six resulting types of matching. 
[Part 2]  Produce the same listing as in Part 1 assuming that the population and housing 
files may contain a group of records for any geographic code. 
 
(vii)  [Part 1]  In addition to the village reference, population and housing files in the 
collating problem discussed in Section 4.2, there is a mapping file that contains the 
geographic features of each village.  Write the structure diagram and structure text for 
producing a listing of geocodes for every geocode, assuming (a) no errors on the village 
reference file and (b) geographic coding errors on the village reference file.  How many 
types are there in each case? 
[Part 2]  Produce the same listing as in Part 1, assuming that the population and housing 
files may contain a group of records for any geographic code.
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5. Errors and Invalidity 
 
5.1 Introduction 
 
 Error processing accounts for a high proportion of program code in information 
systems.   In on-line transaction processing, for example, the program that processes on-
line transactions includes a substantial dialogue with the user in which user errors are 
detected, diagnosed, and the user prompted to reenter data.  And in updating a set of 
entities (for example, warehouse stock items) with current activity recorded on a 
transaction (a stock shipment), the program that maintains the data must detect errors 
such as a transaction for which no corresponding entity exists (an invalid part number), 
or a transaction which is invalid for the corresponding entity (an order for a quantity of a 
part that exceeds its current availability). 
 
 We may specify validity at different levels: for a field (for example, numeric, 
within a specified range, etc.); among different fields within a single transaction or record 
(consistency checks); and within a broader context, such as an entity's entire history.  
Any violation of these specifications of validity are treated as errors.  
 
5.2 Error Versus Invalid Data 
 
  Error data may be contrasted with good data--errors are mistakes by a user.  It is 
usual for an information system to process both error and good data.  Hence, both error 
data and good data are valid for a program component that handles error processing.  
Invalid data, then, is data that is unspecified for a program component.  The distinction 
between error and invalid data is depicted  below: 
 

Data

Valid Data

Good Data Error Data

Invalid Data° °

° °

 
 
  Since programs must be designed to process error data as well as good data, the 
data structures on which the program design is based must include errors as well as good 
data.    
 
5.3 Error Processing Design Objectives 
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 The design of data structures which accommodate errors is not easy.  Many 
structures are possible, and we must make choices that affect the kind of errors that can 
be distinguished, and affect how good data is processed in the presence of errors.  These 
choices are properly the concern of cognitive scientists and man-machine interface 
specialists; the choices are influenced by the types of errors that are likely to occur and 
how easily the user can correct them. 
 
 As programmers, we may set ourselves the following design objectives: 
 
 (i)  The data structure should be known to the user, since it reflects the model of 
the problem; included, is the part of the data structure that deals with errors. 
 
 (ii)  Diagnosis of errors should reflect the data structure - in fact, the diagnostic is 
directly related to a named component of the data  structure.  The user should receive a 
clear interpretation placed on his or her data.   
 
 (iii)  Insofar as possible, the data structure should be designed so as not to 
interfere with the processing of good data. 
 
 Let us illustrate these principles of error processing design with two examples. 
 
 (1)  A transaction file contains up to three transactions, identified as T1, T2 or 
T3;.  The file may be empty or contain any combination of the three transactions; but if 
present, T2 must precede T3 and if T1 is present it must precede T2.  We can depict the 
file structure as below: 
 

 File

T1 Pos T2 Pos T3 Pos

 T1  T2  T3° ° °
 

 
The diagram reflects the specification that any or none of T1, T2, or T3  may be present, 
and if present, they must be present in the sequence T1 before T2 before T3.   
 
 We can easily devise a structure to account for all possible errors such as the 
following: 
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 File

  T1 Pos   T2 Pos   T3 Pos

 T1  T2  T3° ° °

Error Group

  T4   *
 

 
Suppose our transaction file consists of TX, T1, T2, T3.  Since TX is neither a T1, a T2, 
or a T3, it will fall into the error group together with its successors.  This data structure 
has the unfortunate effect that any error causes the remainder of the file to be treated as 
an error.  
 
 The third design goal, to design the data structure so as not to interfere with the 
processing of good data, is difficult to achieve. Instead of the data structure shown above, 
we need to use some structure as: 
 

 File

  T1 Pos T2 Pos T3 Pos

 T1  T2  T3*
 not (T1 
 or  T2 or 
 T3)

*
 not (T2 
 or  T3)

*
    not T3 
  
 

*
   Record

ErrGr 1   ErrGr 2 ErrGr 3   ErrGrX

° ° °

 
 
This structure is simple, but cumbersome and repetitive.  Structures which take account 
of errors are often so.   
 
 (2)  An identifier in Pascal consists of a letter (a-z) followed by any number of 
letters or digits.  Some examples of valid identifiers are:  A, Alpha, A1k.  We wish to 
detect and print out a diagnostic for two error types: 
 1A  identifier doesn't begin with a letter 
 A1+2  identifier contains illegal character(s) 
 
 
 The structure diagram for well-formed identifiers is given below: 
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Identifier body Letter    

letter     0   digit  0

Identifier

Letter or digit *

 
 
When we consider the errors that the program must be designed to process together 
with well-formed identifiers, we arrive at the following structure diagram that defines 
valid data for the program: 
 

° °

Identifier

ErrGrp1  Possible 
    letter

  Identifier 
      body

Non-letter    Letter °*

  Letter Digit Error°

 character *

 
 
 To design the program, we follow the usual JSP design steps.  The diagnostic 
messages should be understandable and reflect the data structure on which the program 
is based.  For example, in response to the identifier input 
 1AL+PH-A 
the program might display the following: 
 
 Character  Message 
 
  1  Identifier doesn't begin with a letter 
  +  Illegal character in identifier body 
  -  Illegal character in identifier body 
 

Just as the syntax diagrams for Pascal syntactic constructs are available to the user of 
Pascal, so, too, the data structure on which the compiler's syntax analyzer is based should 
also be available.   Many compilers prior to the 1980's omitted a description of how 
syntax errors were handled, and may explain their sometimes arbitrary and user-
unfriendly treatment of errors. 
 
5.4  Valid and Invalid Data 
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 Data is valid for a program component if the operation of the component is 
specified for the data;  data is invalid for a program component if the operation of the 
component is unspecified for the data. 
 
 It follows that both good and error data are valid for a program component that is 
concerned with error processing. 
 
 A program component that receives its input directly from a human input, or from 
an unreliable machine source, should be designed to accept all possible input data as 
valid, and hence its operation must be specified for all data. 
 
 However,  a component that receives its input from another component of the same 
system must not check the validity of its own input, but must be able to rely on the 
correct operation of the component that invokes it.  The attempt to have every component 
check its own input is self-contradictory, as the following example shows: 
 
 We wish to calculate overtime pay as part of a payroll system.  Calculation is 
specified for times not exceeding 11 hours and 59 minutes.  The result is a data item, 
overtime-pay.  If we cannot rely on the values of hours and minutes in the input data, we 
may reasonably write: 
 

 if (hours > 11) or (minutes > 59)  
 then 
     errorproc 
 else   
  calculate (hours, minutes, overtime); 

 
The structure of this component is: 
 

° °
calculate

Compute 
O-T Pay

errorproc
 

 
The procedure, calculate, is relying on the correct functioning of the component, 
Compute O-T Pay, to ensure the validity of the hours and minutes values.  Otherwise,  
the procedure calculate must itself check its inputs with a statement like: 
 

 if hours > 11 or minutes > 59 
 then  
  badcalc 
 else  
  goodcalc; 
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This gives as the complete structure: 
 

° °
calculate

Compute 
O-T Pay

errorproc

°
badcalcgoodcalc

°

 
 

If we apply the same reasoning to goodcalc, and to each of its "good" successor 
components, we are driven to an infinite regress!  We must reconcile ourselves to the 
idea that the program component calculate will be unspecified for certain data inputs. 
 
 We can summarize our conclusions about designing components with respect to 
valid data as follows: 
 
 (i)  Every component specification must define precisely what data is valid for the 
component; 
 (ii)  Every component must be designed and coded on the assumption that its data 
is valid; 
 (iii) If component B is a part of component A, then A is responsible for ensuring that the 
data passed to B is valid for B. 
 
Exercises 
 
(i) Using the syntax diagrams as the definition of good data, design data structures to 
process possible user errors for the following Pascal syntactic entities:  (a) integer; (b) 
real; (c)  program heading; (d) const declaration
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6.  Recognition Difficulties and Backtracking 
 
6.1  Multiple read-ahead rule 
 
 Sometimes a condition to be evaluated requires us to look ahead beyond the 
current character or record.  Consider the following example: 
 

     Write a program to remove all comments from a C program.  A  
comment in C begins with the characters, /*, and ends with the characters, 
*/.  Take note of the fact that C allows strings, any characters enclosed by 
double-quotes ("), as well as constants, which are enclosed in single 
quotes.8 

 
 Although the input and output files are both text files, we will avoid explicitly 
modeling the input file as an iteration of lines for reason that will become evident in the 
later chapter dealing with structure clashes.  It will suffice on reading the input file to 
recognize an end-of-line separator so that we can write an end-of-line separator, thus 
preserving the input line structure on the output file.  In addition, we need to recognize a 
comment, a string, a constant, and a character.   
 
 The structure diagram of the input file is: 
 

"C" Program

syntactic 
unit

*

° ° ° °comment string constant characterend-of-line 
separator

°

 
 
The output file has the same structure without comments.   
  
 In order to recognize a "C" comment, we need to read two consecutive characters.  
A dynamic view of the situation is to read the first character, and then, depending on 
whether we have a slash character, to read the second character, and, if it is an asterisk, to 
record the fact that we have a comment, if we are not processing a string.  We may be led 
to use a Boolean variable to store when we are processing a string or constant.   
 
 This dynamic view hides the underlying structure of a comment shown below: 
                                                 
8  The example is from "The C Programming Language" by Brian Kernighan and Dennis Ritchie, Second 
Edition, Exercise 1-23. 
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comment

beginning 
delimiter

body of 
comment

ending 
delimeter

characterslash 
'/'

asterisk 
'*'

*
asterisk 

'*'
slash 

'/'
 

   
 An approach based on the static view of a comment's data structure is to examine 
two consecutive characters for the two-character pattern, '/*'.  Recognition of a comment 
requires that we read two characters prior to the selection.   
  
 In the situation where we have to perform several read operations to evaluate a 
condition, we need a different rule for allocating the read operations.  It is called the 
multiple read-ahead rule: 
 
Multiple read-ahead rule: 
   (1) determine n--the number of characters or records to be read ahead 
   (2) declare n record areas, each with a data part and an eof flag 
   (3) define the Nread procedure 
   (4) allocate n Nread operations at the beginning, immediately after the open operation, 
and 1 Nread operation at the end of the component that processes a record (character). 
 
     The structure text and data structure to implement the multiple read ahead rule are 
shown below: 
 
 (a) structure text                 (b) data structure 
 

     Nread     seq                                                 
      area0 := area1;                     |eof0  | data0|   |rec0|    
      area1 := area2;                     |eof1  | data1|   |rec1| 
         ...                                  ... 
      areaN-1 := areaN;                |eofN | dataN|  |recN| 
      eofinfile := eof(infile);         
        Nnew    select <not eofinfile> 
            readinfile(infile, areaN);          
        Nnew end 
     Nread   end 

 
 Here is a Pascal implementation of the Nread procedure: 
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 type 
  area = record 
    c: char; 
    eofbit, eolnbit: boolean; 
   end; 
 var 
  f: text; 
  area0, area1: area; 
 procedure xread;  {read a character from a text file} 
 begin 
  area0 := area1; 
  area1.eofbit := eof(f); 
  with area1 do 
   if not eofbit then 
    begin 
     eolnbit := eoln(f); 
     c := f^; 
     get(f); 
    end; 
 end; 

 
     Nread uses the record area rec0 as the current record, and the records in rec1, rec2, ..., 
recn only to look ahead n characters or records.  A more efficient procedure would point 
to 
the record areas instead of moving data from one to another. 
 
     Here is the main program for this example: 
 

program stripcomments (input, output); 
{ program strips comments from a "c" program" } 
{  Kernighan&Ritchie  p. 34, exercise 1-23 } 
const 
 slash = '/'; 
 asterisk = '*'; 
 strdel = '"';   {string delimeter} 
 constdel = '''';  {constant delimeter} 
 infilename = 'data place 52:Development:JSP.pas:cprogram'; 
begin 
 reset(f, infilename); 
 xread; 
 xread;         {2 read-aheads} 
 while not area0.eofbit do 
  if (area0.c = slash) and (area1.c = asterisk) then 
{process comment} 
   begin 
    xread;   {strip beginning slash} 
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    xread;   {strip beginning asterisk} 
    while not ((area0.c = asterisk) and (area1.c = slash)) do 
     xread;  {strip character of comment} 
    xread;  {strip ending asterisk} 
    xread;  {strip ending comment} 
   end 
  else if (area0.c = strdel) then 
{process string} 
   begin 
    write(area0.c); 
                    {write beginning delimiter} 
    xread; 
    while (area0.c <> strdel) do 
                    {process body of string} 
     begin 
      write(area0.c); 
      xread; 
     end; 
    write(area0.c); 
                    {write ending delimiter} 
    xread; 
   end 
  else if (area0.c = constdel) then 
{process constant} 
   begin 
    write(area0.c); 
                    {write beginning delimiter} 
    xread; 
    while (area0.c <> constdel) do 
                    {process body of constant} 
     begin 
      write(area0.c); 
      xread; 
     end; 
    write(area0.c); 
                    {write ending delimiter} 
    xread; 
   end 
  else if area0.eolnbit then 
   begin 
    writeln; 
    xread 
   end 
  else 
{process anything else} 
   begin 
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    write(area0.c); 
    xread; 
   end; 
 close(f); 
end. 

 
 Note:  Compare the same program written in C, most of which is shown below.  
Note in particular that the multiple read-ahead rule is followed: 
 

#include <stdio.h> 
#define SLASH          '/' 
#define ASTERISK    '*' 
#define DQUOTE        '"' 
#define SQUOTE         '\x27' 
 
char c,d;     /*global variables */ 
 
void nextchar(void);  /* multiple read-ahead; the first character is readinto c, 
       the second into d */ 
main() 
{ 
nextchar();  /* multiple read ahead at start */ 
nextchar(); 
while (c != EOF) 
 if (c == SLASH & d == ASTERISK)  {   /* process comment */ 
  nextchar();  /* strip beginning slash */ 
  nextchar();  /* strip beginning asterisk */ 
  while (! (c == ASTERISK & d == SLASH)) 
   nextchar();  /* strip character of comment */ 
  nextchar();  /* strip ending asterisk */ 
  nextchar();  /* strip ending slash */ 
  } 
 else if (c == DQUOTE)  {  /* process string */ 
  putchar(c)  /* output beginning delimeter */ 
  nextchar(); 
  while (c != DQUOTE)  {  /* process body of string */ 
   putchar(c); 
   nextchar(); 
   } 
  putchar(c)  /* output ending delimeter */ 
  nextchar(); 
  } 
 else if (c == SQUOTE)  {  /* process constant */ 
  ... 
  ... 
  } 
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 else {  /* process anything else */ 
  putchar(c); 
  nextchar(); 
  } 
return 0; 
}   /* end main */ 
 
void nextchar(void) 
{ 
 c = d; 
 if (c != EOF) 
  d = getchar(); 
} 
 

 
6.2 Backtracking  
 
     The multiple read-ahead technique discussed in the previous section is fine as long as 
we know that we can evaluate a condition after a known number of records or characters.  
But this is not always the case.  Sometimes we cannot recognize a condition after any 
fixed number of reads.  In this situation we need a different technique. 
 
 Let us return to our earlier example which computed the total net movement for 
each part group in a file of warehouse transaction records sorted by part number.   As a 
quality control measure, each shipment and order must be verified by a warehouse 
supervisor when the goods are actually received into or issued out of the warehouse, and 
the supervisor's initials (a two-character code) are then recorded on each transaction.  At 
the end of the day, it is desired to produce a report showing net movement for each part; 
however, parts are to be included on the report only if every shipment and order 
transaction has been properly verified, as indicated by a code in the initials field on each 
transaction record.  Parts with one or more unverified shipment or order transactions, 
indicated by a blank in the initials field, should be written on an error listing; they are not 
to be included in the report (no total line should be generated). 
 
 We don't know how many shipment and order transactions exist for any part 
number.  Thus, we don't know how many records we have to read in order to recognize 
whether we have a part all of whose shipments and orders have been verified. 
   
     Here are the data structures for the input and output files: 
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 Daily 
  transactions

Part Group*

° °
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Group
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Input File
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Display  
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Display 
end line

    Display 
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Error 
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Error 
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*

*
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 Each part group is either completely verified or not.  There are innumerable ways 
that a part group may be unverified, and this creates a difficult recognition problem.  If, 
however, we treat the selection as being ordered and place the verified group as the left 
component of the selection, then we don't have to recognize all of the ways of obtaining 
an unverified group--a group is unverified if it is not completely verified. 
 
          The design of our program proceeds in three stages: 
 
(1)  Design the program as if a friendly demon will tell us whether a group is verified or 
not.  That is, at first, ignore the recognition difficulty and design the program as if the 
selection  condition can be evaluated at the start of the selection. 
 
     Using JSP, we obtain the program structure text below:  
 

CFILE-PREPORTS  seq 
 reset(transfile); 
 rewrite(reportfile); 
 rewrite(errrlist); 
 xread(transfile); {read header} 
 P-REPORTBODY  iter until eofbit 
  groupkey := trans.key; 
  GROUP-OUT  select verified-group 
   total := 0; 
   xread(transfile); 
   VERIFIED-GROUP  iter until eofbit or trans.key <> groupkey 

   PROCESS-TRANS  select  trans.type = 'S' 
     total := total + amount; 
    PROCESS-TRANS  alt  trans.type = 'O' 
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     total := total - amount; 
    PROCESS-TRANS  end 
    xread(transfile); 
   VERIFIED-GROUP  end 
   writeln(reportfile,groupkey, total); 
  GROUP-OUT  alt  unverified-group 
   UNVERIFIED-GROUP iter until eofbit or trans.key <> groupkey 
    writeln(errlist, trans.rec); 
    xread(transfile); 
   UNVERIFIED-GROUP  end 
  GROUP-OUT  end 
 P-REPORTBODY  end 
 close(transfile); 
CFILE-PREPORTS  end 

 
 We cannot, of course, translate the structure text into a program, since we have no 
way of specifying the condition for a verified group.  However, we could, acting as our 
own friendly and omnipotent demon, code the first transaction of each part group with a 
code indicating whether every transaction in the group had been verified or not, and thus 
informally demonstrate the program's acceptability. 
 
(2)  In the second stage of program design, instead of selecting a verified part group, let's 
posit that we have a verified group.  If we find an unverified transaction in the group, we 
will quit this component, and go to the component that processes an unverified group.  
Since this control structure is not currently implemented in programming languages, we 
will need to introduce it.  The structure text and pseudocode for this backtracking control 
structure are shown below: 
 

     structure text            Pascal implementation 
 
     A    posit                 begin  {posit} 
          do B;                     do B; 
     A    quit <condition>         if <condition> then 
          do C;                        goto 1; {quit, go to admit part} 
     A    admit                     do C;   
          do D;                       goto 2;   {finished--no error} 
     A    end                 1:    {admit error} 
                                     do D; 
                               2:  end   

 
Note that if we quit the posit component, control is passed to the start of the admit 
component; while if we do not quit the posit component, control is transferred, after we 
have completed any statements in the posit component that follow the quit statement,  to 
the end line of the posit..admit..end control structure.  Because the control structure has 
not been implemented, we must resort to using the forbidden goto statement.  Note, 
however, that this is not a case of an unrestricted goto; the labels are synonyms for the 
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admit and end lines of a semantically well-defined but unimplemented control structure.  
Moreover, it is at the heart of our method to design intelligible programs--programs that 
reflect the problem structure.  Designing our program to accommodate the rule "don't use 
goto statements" instead of the problem will result in a program structure that is distorted 
and will be more costly to maintain. 
 
 The program structure text reflecting the second design stage with the posit..admit 
control structure is shown below: 
 

CFILE-PREPORTS  seq 
 reset(transfile); 
 rewrite(reportfile); 
 rewrite(errrlist); 
 xread(transfile); {read header} 
 P-REPORTBODY  iter until eofbit 
  groupkey := trans.key; 
  GROUP-OUT  posit verified-group 
   total := 0; 
   xread(transfile); 
   VERIFIED-GROUP  iter until eofbit or trans.key <> groupkey 
    quit  VERIFIED-GROUP if trans.init = blanks 
    PROCESS-TRANS  select  trans.type = 'S' 
     total := total + amount; 
    PROCESS-TRANS  alt  trans.type = 'O' 
     total := total - amount; 
    PROCESS-TRANS  end 
    xread(transfile); 
   VERIFIED-GROUP  end 
   writeln(reportfile,groupkey, total); 
  GROUP-OUT  admit unverified-group 
   UNVERIFIED-GROUP  iter until eofbit or trans.key <> groupkey 
    writeln(errlist, trans.rec); 
    xread(transfile); 
   UNVERIFIED-GROUP  end 
  GROUP-OUT  end 
 P-REPORTBODY  end 
 close(transfile); 
CFILE-PREPORTS  end 

 
(3)  In the third and last stage of design, we identify and deal with side effects.   Side 
effects may be categorized into three types: 
 (i)  neutral - changes in the state of the computation resulting from the execution 
of the posit block have no adverse affect on the final result; 
 (ii)  positive - computations resulting from the posit are valid in the admit part, 
and save the trouble of recomputing; 
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 (iii)  negative - changes in the posit have to be undone; the state of the 
computation has to be restored at the start of the admit block to the state that existed at 
the start of the posit block 
 
 It is from third type of side effects that the name "backtracking" comes:  we need 
to "undo" what we've done from the beginning of the posit until we discover that the 
posit condition does not hold, that is, "backtrack" or, in other words, restore the state of 
the computation at the start of the posit part.  Restoring the state of the computation that 
existed at the start of the posit suggests that we need to save the state of the computation 
at this point. 
 
 In our problem we have negative side effects that are associated with reading the 
input file.   Adverse side effects are usually associated with reading/writing of serial files.  
The best and easiest way to deal with this side effect is with procedures that 'note' and 
'restore' the file.  The note procedure is invoked immediately after the posit operation, 
and the restore procedure immediately after the admit statement.   
 
     The complete PASCAL program with the note and restore procedures follows: 
 

     program backtracking (input, output); 
{example adapted from "Constructive Methods of Program design" } 
{     by M. Jackson to illustrate backtracking} 
 const 
  fname = 'data place 52:Development:JSP.pas:WarehouseTrans'; 
  reportname = 'data place 52:Development:JSP.pas:Report'; 
  errorname = 'data place 52:Development:JSP.pas:ErrorList'; 
  blank = '   '; 
 var 
  f, report, error: text; 
  sum, groupkey, cnt, savcnt: integer; 
  eofbit: boolean; 
  key, qty: integer; 
  initials: packed array[1..3] of char; 
 label 
  1, 2; 
 
 procedure xread; 
 begin 
  eofbit := eof(f); 
  if not eofbit then 
   readln(f, key, qty, initials); 
 end; 
 
 procedure note; 
 begin 
  savcnt := cnt; 
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 end; 
 
 procedure restore; 
 begin 
  reset(f); 
  cnt := 0; 
  repeat 
   xread; 
   cnt := cnt + 1; 
  until cnt = savcnt; 
  groupkey := key;   {error group} 
 end; 
 
begin  {main program} 
 reset(f, fname); 
 rewrite(report, reportname); 
 rewrite(error, errorname); 
 cnt := 0; 
 xread; 
 cnt := cnt + 1; 
 writeln(report, ' Daily Net Movement Report ...'); 
 writeln(error, ' Error List'); 
 while not eofbit do 
  begin 
   groupkey := key; 
      {posit verified group} 
   note; 
   sum := 0; 
   while not eofbit and (groupkey = key) do 
    begin 
     if (initials = blank) then 
      goto 1; {quit verified group} 
     sum := sum + qty; 
     xread; 
     cnt := cnt + 1; 
    end; 
   writeln(report, '  ', groupkey, '   ', sum); 
   goto 2; 
      {end verified group} 
1: {error group} 
   restore; 
   while not eof(f) and (groupkey = key) do 
    begin 
     writeln(error, ' ', key, qty, initials); 
     xread; 
     cnt := cnt + 1; 
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    end; 
      {end error group} 
2:  end; {while not eof(f)} 
 close(f); 
end. 

 
6.3  Backtracking (within iteration) 
 
6.3.1  quit in iteration 
 
 Consider the following problem: 
 

A file consists of a sequence of integers.  Print the integers as long as their 
cumulative sum doesn't exceed 100. 

 
 We would probably structure the program text as follows: 
 

F-SEQ  seq 
 reset(f); 
 xread(f,x); 
 sum := 0; 
 F-BODY  iter while not eofbit 
  sum := sum + x; 
  F-WRITE sel  <sum <= 100> 
   write(x); 
  F-WRITE end  
  xread(f,x) 
 F-BODY end 
F-SEQ  end 

 
Note that the problem states that we are done when the cumulative sum exceeds 100.  In 
our structure text, however, we continue iterating until the end of file is reached.    
 
 We will introduce quit as a new element in our structure text.  Its syntax is 
 

quit <component> <condition> 
 
and has the meaning "quit from the specified program component if the condition 
specified is true." 
 
 Our program structure text becomes: 
 

F-SEQ  seq 
 reset(f); 
 xread(f,x); 
 sum := 0; 
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 F-BODY  iter  while not eofbit 
  sum := sum + x; 
  quit  F-BODY if sum >100; 
  write(x); 
  xread(f,x); 
 F-BODY  end 
F-SEQ  end 

 
We could have achieved the same result by putting a compound condition at the head of 
the iteration as shown below: 
 

F-SEQ  seq 
 reset(f); 
 xread(f,x); 
 sum := 0; 
 F-BODY  while not eofbit and (sum <= 100) 
  sum := sum + x; 
  write(x); 
  xread(f,x); 
 F-BODY  end 
F-SEQ  end 

 
We don't really need a backtracking construct here, because there are no adverse side-
effects. 
 
6.3.2   Backtracking in iteration 
 
 Let us consider a slight modification to the problem presented above.  The 
program is to print the entire file only if the cumulative sum of the integers exceeds 100;  
in any case, the cumulative sum is to be printed.   
 
 The input file structure is as follows: 
 

File

� <= 100

Integer
*

Integer
*

° °
� > 100

  
 
The design of the output and basic program structures is left as an exercise. 
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 We will treat this problem as one requiring backtracking and proceed in three 
stages as before: 
 
Stage 1:  Design the program as a selection 
 

F-SEQ  seq 
 reset(f); 
 xread(f,x); 
 sum := 0; 
 F-BODY  sel   {sum <= 100} 
  F-BODY-ITER1  while not eofbit  
   sum := sum + x 
   xread(f,x); 
  F-BODY-ITER1  end 
 F-BODY  alt {sum > 100} 
  F-BODY-ITER2  while not eofbit 
   sum := sum + x; 
   write(x); 
   xread(f,x); 
  F-BODY-ITER2  end 
 F-BODY  end 
 write(sum); 
F-SEQ  end 

 
Stage 2: Change the selection to a posit...admit  
 
 In addition to the lines with  sel and alt, we need to add  
 

quit  F-BODY if sum >100; 
 

immediately after the statement that updates the value of the variable, sum, in the 
component, F-BODY-ITER1. 
 
Stage 3: Deal with side effects 
 
 When we find that the cumulative sum exceeds 100 in the posit component, we 
have already read part of the input file without having printed it.  There is more than one 
way to deal with this side effect.  One way is to reset the input and initialize the sum at 
the start of the admit--in effect, start over.  We obtain the  structure text shown below:  
 

F-SEQ  seq 
 reset(f); 
 xread(f,x); 
 sum := 0; 
 F-BODY  posit  {sum <= 100} 
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  F-BODY-ITER  while not eofbit  
   sum := sum + x 
   quit  F-BODY if sum >100; 
   xread(f,x); 
  F-BODY-ITER1  end 
 F-BODY  admit {sum > 100} 
  reset(f);   {reinitialize} 
  xread(f, x); 
  sum := 0; 
  F-BODY-ITER2  while not eofbit 
   sum := sum + x; 
   write(x); 
   xread(f,x); 
  F-BODY-ITER2  end 
 F-BODY  end 
 write(sum); 
F-SEQ  end 
 

 Another way to deal with the undesirable side effect of having read some of the 
input file without printing when the posit condition has been disproved is to save the 
integers read to a print file; if and when the cumulative sum exceeds 100, then, at the 
start of the admit component, we will copy the print file to the printer.  The partial sum 
that has been computed in the posit component is mostly a positive side effect--we must 
only undo the last operation that caused the sum to exceed 100; the rest of the 
computation of the cumulative sum does not have to be recomputed.  The structure text is 
shown below: 
 

 F-SEQ  seq 
 reset(f); 
 xread(f,x); 
 sum := 0; 
 F-BODY  posit  {sum <= 100} 
  rewrite(g);   {print file} 
  F-BODY-ITER1  while not eofbit  
   sum := sum + x 
   quit  F-BODY if sum >100; 
   write(g, x); 
   xread(f,x); 
  F-BODY-ITER1  end 
 F-BODY  admit {sum > 100} 
  sum := sum - x;  {undo sum := sum + x} 
  rewrite(g); 
  gread(g, x);   {gread is file procedure for g} 
  F-PRINT  iter while not eofgbit    {eofgbit associated with gread} 
   gread(g, x); 
   write(x); 
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  F-PRINT  end 
  F-BODY-ITER2  while not eofbit 
   sum := sum + x; 
   write(x); 
   xread(f,x); 
  F-BODY-ITER2  end 
 F-BODY  end 
 write(sum); 
F-SEQ  end 
 

 Finally, it is interesting to note what happens if we change the order of selection--
that is, we posit that the cumulative sum exceeds 100.  In this case, we must deal with the 
side effect of having already printed part of the file if it turns out that cumulative sum 
does not exceed 100.  To deal with this side effect, we will,  instead of writing directly to 
a printer, write to a print file as we did previously.  Then, if only if the cumulative sum of 
the entire file exceeds 100, we will print the print file.  The structure text is shown below: 
 

F-SEQ  seq 
 reset(f); 
 xread(f,x); 
 sum := 0; 
 F-BODY  posit  {sum > 100} 
  rewrite(g);  {g is print file} 
  F-BODY-ITER1  while not eofbit  
   sum := sum + x; 
   write(g,x); 
   xread(f,x); 
  F-BODY-ITER1  end 
  quit F-BODY if sum <= 100; 
  rewrite(g);  {now get set to write the print file to the printer} 
  xread(g, x); 
  F-PRINT iter while not eofbit  
   write(x); 
   xread(g, x); 
  F-PRINT  end 
 F-BODY  end 
 write(sum); 
F-SEQ  end 

 
Note that we have computed the sum correctly in the posit component--a positive side 
effect.  In fact, all of the work of the admit component has been done in the posit 
component, and we can discard it entirely. 
 
Exercises 
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(i)  The data structure given for the multiple read-ahead rule is inefficient in that it 
requires that (n-1) record areas be copied prior to reading into the current record area.  
Design a more efficient data structure and the associated read procedure. 
 
(ii)   Write the program to produce the verified net movement report and unverified error 
listing without using the go to statement.  Is the structure intelligible (does it model the 
problem structure)?  
 
(iii)  Design a program to print out the contents of a file if it contains more than 50 
records.  
 
(iv)  A file consists of alternating sequences of integers.  Each sequence begins with an 
identifier containing a sequence number and the number of integers in the sequence.  A 
program is to be written to copy the sequences as a single sequence.  The program should 
terminate when the cumulative sum of all of the integers in sequences read so far exceeds 
a parameter, n.
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7.  Structure Clashes and Program Inversion 
 
7.1  Structure Clashes 
 
 The design method that has been presented in the preceding chapters works when 
there is a correspondence between input and output data structures.  What happens when 
such correspondences don't exist, as in the following example? 
 

     Consider the input file of the net movement problem in section 4.1.2.  
The file consists of daily transactions sorted by part number; each part 
number may have one or  more transactions--either a receipt into the 
warehouse or an order out of the warehouse.  Each transaction contains a 
transaction code, a part-identifier, and a quantity received or ordered.  A 
program is to be written that prints a line for each part number showing 
the net daily movement for that part number into or out of the warehouse.  
Suppose the input file is blocked, with each block containing a record 
count followed by a number of records.   

 
The system diagram is shown below: 
 

Input 
file

C-Input; 
P- Report

Daily Net 
Movement 
Report

 
 
The structure of the input and output files is shown below: 
 

Report

Title line Report body End line

      Report line
*

 Report file

Daily  
transaction 

file

Block
*

Record count Block body

*

Input file

Transaction 
record  
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 The report file structure is the same as was shown previously in section 4.1.2; 
however, the input file structure shows the arrangement of records into blocks, but not 
the arrangement of records into groups--we cannot depict the structure of blocks and 
groups in a single diagram.  
   
         A report line does not correspond to a block.   The input and output structures are 
thus not compatible.  The essence of our difficulty is that the program must have an 
operation that is executed once per block and an operation that is executed once per 
group, so there must be both a block component and a group component; but we cannot 
have a single program structure with process block and process group components.  We 
have a boundary clash--the boundaries of blocks are not synchronized with the 
boundaries of groups. 
 
     The solution is to decompose the program into two simple programs, as shown below: 

 

Daily Net 
Movement 
Report

Input 
file PA

Inter- 
mediate 

file
PB

 
Program PA consumes the input file of blocks of records and produces an unblocked file 
of transactions.  Program PB consumes the groups of unblocked transaction records and 
produces the required report.   
      
     The input, intermediate and report files, together with their correspondences, are 
shown below: 
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Programs PA and PB can both be written using JSP:  the input and output files of PA 
have correspondence at the top and record levels;  a net movement total line in the report 
produced by PB corresponds to a set of transaction records corresponding to a part group 
in the input file.   The structure text for PA and PB is shown below: 
 
PA  seq 
   reset(infile); 
   xread(infile, block); 
   rewrite(outfile); 
   PA-BLOCK  iter <while not eofbit>   
       j := 1; 
      PA-DEBLOCK  iter 
              <while not (j>reccnt)>       
          outrec.itemno := inrec.itemno[j]; 
          outrec.transcode := inrec.transcode[j]; 
          outrec.qty := inrec.qty[j]; 
          write(outfile, outrec); 
          j := j + 1; 
      PA-DEBLOCK  end    
      xread(infile,block); 
   PA-BLOCK  end    
   close(infile); 
   close(outfile); 
PA   end  

PB  seq 
   reset(infile); 
   xread(infile, rec); 
   writeln(' Daily Net Movement Summary '); 
   writeln; 
   PB-REPORTBODY  iter <while not eofbit> 
      groupid := rec.itemno; 
      netqty := 0; 
      PB-GROUP  iter  <while not eofbit  
                  and (groupid = rec.itemno)> 
           netqty := netqty + rec.qty; 
           xread(infile, rec); 
      PB-GROUP  end 
      writeln(' ', groupid, ' ', n etqty); 
    PB-REPORTBODY  end 
    close(infile); 
PB  end 

 
 Decomposition of a complex program into two or more simple programs has the 
following advantage:  The programs we obtain are distinct.  A serial file forms a 
boundary between any pair of programs.  We don't have to think "dynamically".  For 
example, we don't need to ask, "What if a group extends over several blocks?" or "What 
if a group has no data records?" We know our programs are correct, because we can think 
in terms of static data structures.  Simple programs are a satisfactory high-level design 
component--they are bigger than the control structures of structured programming; at the 
same time, they have more precise criteria than modules. 
 
 Our solution is inefficient, however.  By introducing an intermediate file, we have 
roughly doubled the execution time (in comparison with a program that produced a report 
without an intermediate file).  We will learn a little later how to optimize our design by a 
simple program transformation, program inversion. 
  
 The "boundary" clash in this example is one type of structure clash.  Another type 
of structure clash appears in the following example: 
 

     Let us suppose that our input file is incompletely sorted by part 
number. Total lines for each part group on the report may be in any order. 
 

     The input file has the following structure: 
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Daily  
transaction 

file

  *
Transaction

 
 

The input consists of groups, each of which has the from shown below: 
 

Part group

Transaction
*

      
 

     Since the input file is not sorted completely by part number, we cannot show the 
group structure and the input file structure on one diagram.  Our input file is an 
interleaving of part groups.  To resolve this "interleaving" clash, we split the input file 
into part groups as shown below: 

      

Psplit
  Input 
  file

PG1

PGn

PG1

PGn

   Output Preport
Daily 
Net 

Movement 
Report

 
 
 Each of the intermediate files, PG1, PG2, ...,PGn has the structure of a part group.  
The programs, PG1, PG2,..., PGn, that produce the Daily Net Movement Report each 
read a part group file and produce the report, each program contributing one total line to 
the report.  The input and output data structures shown below for programs Psplit and 
Preport show correspondences and no structure clash; hence, we have no difficulty 
constructing the programs using the basic JSP design method: 
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7.2   Program Inversion 
 
 In the previous section, we examined how to deal with  structure clashes, that is 
situations in which we cannot construct a program design because we don't find 
compatibility between input and output file structures.  We looked at two types of 
structure clash, namely boundary  clash and interleaving clash.  We found that the 
solution to the structure clash in both cases is to decompose the program into two (or 
more) simple programs that can be designed using the steps of JSP.  We noted that this 
method of decomposition has several  advantages:   
 
 (1) We are able to use JSP, and  can  be certain that we have  produced  well-
designed programs;   
 (2)  The serial file produced by the first program provides a simple yet well-
defined interface between the two programs.  
 
 However, we noted that this solution by decomposition is inefficient.  We would 
like keep our design method, but be able  to achieve an optimized solution.   
 
 Program inversion achieves  this objective, that is, we design simple programs 
using JSP and then invert one (or more) programs to optimize the design.  Moreover, we 
gain this efficiency without introducing errors because program inversion is a well-
defined (algorithmic) program transformation.  
 
 Let us reconsider the boundary clash problem in general terms.  The system 
diagram is given in the following  diagram: 

 

A P X

(A and X are serial data streams)  
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 The structure of the serial files A and  X is shown in the following diagram:   
 

*

*

*

*

A

B

C Z

Y

X    X produced from A

No correspondence 
 between Y and B

Z produced from C

 
 
  There is a 1-to-1 correspondence at the top level and at the lowest level, but there 
exists an intermediate level where no such correspondence exists. 
 
 The resolution of the structure clash is effected by decomposing the program P 
into two programs, PA and PB as shown below: 
 
 

A PA I PB X
 

 
 The data structures of the serial input file, A, the intermediate file, I, and the 
output file, X are shown below: 

 
 

* *

*

*

*

A

B

C Z

Y

X

C

I

 
 
 There is no structure clash between A and I, so the structure of PA can be 
constructed without difficulty; the same is true of I and X and PB.   Whereas in general, 
the description of a file as an iteration of records is rarely sufficient--though always true--
in designing a program, in the case of resolving a structure clash, this description is 
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invaluable.  The intermediate file, I, contains the largest component common to both A 
and X--an idea analogous to the "greatest common divisor" of two integers.  
 
 What is important in the resolution of the structure clash is a decomposition that 
enables us to concentrate on a correct analysis of PA and PB.  The processing for the 
system diagram  
 

IPA PB
 

 
can be accomplished in a number of ways: 
 
 (1)  Batch processing:  PA produces the serial data stream, I, which is then 
processed by program PB. 
 Special case:  If I can be stored in memory, there is no need for an external data 
stream, I, and P can be accomplished by executing in order subroutines PA and PB. 
 
 (2)  Parallel processing:  It would be more efficient if P2 processes each record of 
I as soon as it is created by PA instead of waiting until all of I has been produced.  We 
can arrange PA and PB to be cooperating programs or coroutines.  PA produces a record 
in a buffer and transfers control to PB which consumes (processes) the record and then 
transfers control back to PA again.  The cooperation between PA and PB is depicted 
below: 
 

call PA 
get

PA:

put 
call PB 

put 
call PB 

put 
call PB 

PB

get
(process)

call PA 
get

(process)

(process)  
 
 Alternatively, PA and PB can be written as independent tasks under control of a 
multi-programming task supervisor which manages the alternating suspend and resume 
between the two tasks. 
 
 (3)  Quasi-parallel processing: program inversion 
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 Multi-programming is expensive in system resources.  We can achieve a solution 
of a structure clash more cheaply:  instead of running PA and PB in parallel, we can 
convert one so that it runs as a subroutine of the other.  We call the conversion process, 
program inversion.  The system diagram: 
 

 IA PA PB X
 

 
is rewritten as: 
 

A PA

X

PA produces a record and invokes 
the subroutine PBI which uses it 
to produce X.

PBI

We say that PBI is inverted with 
respect to its input file.

 
 
or as: 
 

PB produces X, invoking the  
subroutine PAI to obtain the  
next record.

PAI

PB

A

X

We say that PAI is inverted with 
respect to its output file.

 
 
 Subroutines or procedures in FORTRAN, COBOL and Pascal (among others) do 
not store their return address in the calling program, and so the calling program does not 
know where to resume the subroutine.  If a multiple ENTRY facility is used, the 
program, PA, is no longer independent of PB, since it must know which ENTRY point to 
invoke.  We wish to design PA and PB independently of each other so that the structure 
of each is based on the data structure representation of its own problem 
environment. 
 
 Program inversion is a purely mechanical transformation of the independent 
programs, PA and PB, into a main program and subroutine, where the subroutine has a 
single ENTRY point and stores its return address within itself so that it is resumable. 
 
 Consider the boundary clash example again: 
 

 IA PA PB X
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          We can convert the program PA into a procedure PAI, which has the 
characteristics of an input procedure for I.  Successive calls to PAI will 'open I', 'read I' 
(iteratively), and 'close I'.  PAI passes the next record to PB and notifies PB when  an end 
of file has been reached.   (Alternatively, we could convert PB into a procedure PBI, 
which has the characteristics of an output procedure for I.)  PA and PAI are identical 
programs.  PAI is a resumable or variable-state procedure, that is, it performs some 
operations, suspends its execution (passes control back to PB), and when called again, 
resumes at the point where it left off.  PAI must keep track of its state, and does so with a 
state vector  (or activation record) that holds the values of any variables together with a 
text pointer to the next instruction in its text to be executed. 
 
      In our example, we know that the stream of operations that 
PAI must perform is: open, read, read,..., close.  
 
 Let us let PA represent our program to deblock our blocked warehouse 
transactions and PB the program to write our daily net movement summary report.  Here 
is the structure text for PA followed by its transformation into the variable state 
subroutine, PAI: 

 
PA  seq 
   reset(infile); 
   xread(infile, block); 
   rewrite(outfile); 
   PA-BLOCK  iter <while not eofbit>   
      j := 1; 
      PA-DEBLOCK  iter  
              <while not (j >block.reccnt)>       
          outrec.itemno := inrec.itemno[j]; 
          outrec.transcode := inrec.transcode[j]; 
          outrec.qty := inrec.qty[j]; 
          write(outfile, outrec); 
          j := j + 1; 
      PA-DEBLOCK  end    
      xread(infile,block); 
   PA-BLOCK  end    
   close(infile); 
   close(outfile); 
PA   end  

PAI  seq 
       GOTO (5, 15) DEPENDING ON qs 
5:    reset(infile); 
       xread(infile, block); 
       PA-BLOCK iter <while not eofbit> 
         j := 1; 
15:    PA-DEBLOCK iter 
               <while not (j>block.recnt)>      
            outrec.itemno := inrec.itemno[j]; 
            outrec.transcode:= inrec.transcode[j]; 
            outrec.qty := inrec.qty[j]; 
             j := j + 1; 
             qs := qs + 1; 
             return 
          PA-DEBLOCK end    
          xread(infile,block); 
      PA-BLOCK  end  
      close(infile); 
      return 
 PAI   end  

 
 The following changes transform PA to PAI: 
 (1)  A GOTO <L1, L2, ..., Ln> DEPENDING ON qs is coded as the first 
statement of the text of PAI.   
 After each write statement in PA's text, the position in the text must be 
remembered explicitly.  On the next invocation of  PAI, the program must resume at that 
point. Since a procedure starts each invocation at the beginning of its text, there must  be 
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a conditional jump from the beginning of the program text to the correct resume point.   
We have used the GOTO <L1, L2, ...> DEPENDING ON qs statement to express the 
resume mechanism.  Here, L1, L2, ... , Ln represent label statements in PAI, and qs 
represents successive states of PAI.  The variable, qs is assumed to be initialized to 0.  
The local  variables of PAI together with a pointer to the point of resumption in the 
program text is called the state vector of PAI.  
 (2)  The rewrite(outfile) in PA is deleted from PAI 
      (3)  Instead of the write (outfile, outrec) statement in PA, PAI passes the next 
record to PB, increments qs to resume at the proper point of its text, and returns control 
to PB. 
      (4)  When the end of file is reached, eofbit is set to true, and PAI passes it to PB.  
      (5)  The close(outfile) statement in PA is deleted from PAI. 
 
  PA and PAI have the same structure.  The  transformation of the program PA to 
the variable state procedure  PAI is straightforward, and can be accomplished 
algorithmically.  
Because we have inverted the program PA with respect to the file I, we have optimized 
our solution--the file I no longer exists. 
 
 Here is the original program PB followed by the transformed program PB': 
 
PB  seq 
   reset(infile); 
   xread(infile, rec); 
   writeln(' Daily Net Movement Summary '); 
   writeln; 
   PB-REPORTBODY  iter <while not eofbit> 
      groupid := rec.itemno; 
      netqty := 0; 
      PB-GROUP  iter  <while not eofbit  
                  and (groupid = rec.itemno)> 
           netqty := netqty + rec.qty; 
           xread(infile, rec); 
      PB-GROUP  end 
      writeln(' ', groupid, ' ', n etqty); 
    PB-REPORTBODY  end 
    close(infile); 
PB  end 

PB'  seq 
   PAI 
   writeln(' Daily Net Movement Summary '); 
   writeln; 
   PB-REPORTBODY  iter <while not eofbit> 
      groupid := rec.itemno; 
      netqty := 0; 
      PB-GROUP  iter  <while not eofbit  
                  and (groupid = rec.itemno)> 
           netqty := netqty + rec.qty; 
           PAI 
      PB-GROUP  end 
      writeln(' ', groupid, ' ', n etqty); 
    PB-REPORTBODY  end 
PB  end 

 The following changes transform PB to PB': 
 (1)  The initial reset(infile) and xread(infile, rec) in PB are replaced by an initial 
invocation of the procedure PAI; 
 (2)   The xread statement in PB-GROUPBODY is replaced by invoking PAI; 
 (3)   The close(infile) statement in PB is deleted in PAI.   
 
      Recall the following system diagram for the interleaving  problem: 
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 We created a multiplicity of files, PG1...PGn.  We can rid of these by inverting 
each of the programs PG1...PGn into procedures PGp1...PGpn.  We still have a 
multiplicity of  procedures.  We observe that the procedures have identical text--they are 
the same--what differs is only their state vectors.  If we separate the procedure text from 
the state vectors, we obtain  just one procedure, PGp, and must simply provide a way for 
the procedure to access the correct state vector (we can store the state vector for group i 
as the  
i th record in a direct access method, or as the i th row of an array, for example).  
Separation of the text of a program from its state vector is another implementation 
transformation in JSP that optimizes design without introducing design errors. 
 
7.3 Implementation of Inversion 
 
 In the Pascal implementation of inversion, we use the case construction instead of 
the construct introduced in our structure text, namely, 
 

GOTO(l1,l2,...) DEPENDING ON QS 
 

to express the variable states of PAI.  The case statement equivalent is shown below: 
 

case qs of 
l1:  <statement-1>; 
 ... 
ln: <statement-n>; 
end; 

   
 The case statement is, of course, a general selection statement, and is thus not very 
satisfactory since what we have in PAI is not selection, but a strictly determined 
sequence of states: qs is 0 first, then qs is 1, etc. 
 
 Since procedures in Pascal do not remember their state, the state vector of PAI 
must either be global variables, parameters of PAI, or the entire state vector needs to be 
saved when PAI is suspended and restored when PAI is resumed.  Finally, the state 
variable, qs, must be initialized at the start. 
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 In order to implement the structure text of PAI in Pascal, we will have to rid 
ourselves of its nested block structure, since we resume control at a point within an 
iteration (which is itself contained in another iteration) and Pascal does not allow us to 
jump into the middle of an iteration.   In general, 'nest-free' or flat code must be generated 
for control structures as shown below: 
 

Structure text         Nest-free Pascal 
 
Sequence 
A  seq         begin 
 do B;          B; 
A  end         end 
 
Selection 
A sel  <cond-1>      if not <cond-1> then 
 do B;          goto l1; 
A  alt  <cond-2>       B;    
      
 do C;         goto l2; 
A end        l1: if not <cond-2> then 
            goto l2; 
           C;  
          l2: {end} 
Iteration  
A iter while <cond>    l1: if not <cond> then 
 do B;           goto l2; 
A end         B;    
               
 goto l1; 
          l2:  {end} 
Backtracking (selection) 
A posit        l1: {posit} 
 do B;         B; 
A quit <cond>      if <cond> then 
 do C;          goto l2; 
 {quit posit, go admit} 
A admit         C; 
 do D;         goto l3; 
A end        l2: {admit} 
           D;    
  
          l3: {end} 
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Backtracking (iteration) 
A iter        l1: {iter} 
 do B;         B; 
A quit <cond>       if <cond> then 
 do C;          goto l2; 
A end         C; 
           goto l1; 
          l2: {end} 
 

 Jackson and his co-workers developed specialized compiler pre-processors to 
generate nest-free code for both COBOL and PL/I.  There is no such pre-processor for 
Pascal, and we will therefore not pursue implementation of inversion in Pascal any 
further.   Also, recent developments in programming languages permit direct modeling of 
coroutines9. 
 
7.4 Significance of Program Inversion 
 
 We have looked at program inversion as a method for optimizing simple 
programs connected by serial data streams as in the system diagram below: 

 

 I P  O
 

  
This schema of a simple program would seem to have limited applicability to batch data 
processing systems. 
 
 However, the deeper significance of program inversion is that many situations 
appearing in their dynamic, piecemeal executable form can be recast in their underlying 
serial form as a simple program.  Any resumable program--one that is alternately 
activated and suspended--is an example of inversion.  We can ask 'What is the underlying 
seriality of its input and output?'  Once we discover the underlying seriality of the 
problem, we can recast the problem in serial form, and design a simple program using 
JSP.   Then, confident of the correctness of our design, we can optimize the design using 
inversion.  Since the inversion preserves program correctness--it is an algorithmic 
transformation--we can be confident about the design of the inverted (resumable) 
program.   The recognition of resumable processes as being essentially the inversion of a 
serial process, together with the correctness-preserving property of the inversion 
transformation of a simple program, allow us to extend the range of JSP to many 
situations that at first glance do not appear to be amenable to it.  Some examples are the 

                                                 
9  C has a number of features that make implementation of inversion easier: for example, static variables, a 
quit statement, and branching into loop constructs.  
Modula-2 and ADA model concurrency.  Some OOP languages such as POOL model concurrency.  
SmallTalk has facilities to model parallel processing and process scheduling.    
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design of interrupt handlers, conversation dialogues, and on-line transaction monitors 
among others.   
 
 In each of these cases, an ongoing process appears dynamically  in its executable 
form.  An interrupt handler is activated and processes an interrupt or a dialogue 
procedure responds to a terminal input, for example.   In each case, we approach the 
problem by viewing it statically, that is, by taking  a 'bird's eye' view of the entire 
temporal process of which we are seeing a snapshot.  We view the entire stream of 
interrupts or terminal inputs in the course of a day; then, having thus recast the problem 
into its underlying serial structure, we design a simple program using JSP; and, once the 
program has been designed, we can invert the program into a resumable procedure, 
confident that its design is also correct since the inversion transformation preserves 
correctness. 
 
 So, the significance of program inversion is that it extends the  applicability of 
JSP into new areas.  Let us examine some of these areas--the design of variable state 
procedures; networks; and data processing systems. 
 
     (1)  We can use JSP to design variable state procedures.  
 
 First we specify the main program equivalent to the procedure; then we design the 
main program; finally, we invert it.   
 
 Here  are some examples: 10 
 
(a)  Q requires a procedure P that returns the first prime on the  first invocation and the 
next prime on each of the next 999  invocations. 
 
     The equivalent main program, P, creates a file of 1000 prime numbers that is read by 
the program Q, as shown in the system diagram below: 
 

P Q F
 

 
P is inverted with respect to F to create a variable state subroutine invoked by Q. 
 
(b)  Q requires a procedure P that scans a database and returns for each invocation, all 
database customer segments that satisfy condition  C. 
 

                                                 
10  Examples (a) and (b) are from "Program Inversion and Its Consequences" in JSP&JSD:  The Jackson 
Approach to Software Development" by J. R. Cameron. 1983  (1st edition); example (c), (d) and (e) are 
adapted from "Constructive Methods of Program Design" by M. A. Jackson in the same book, p. 81.   
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     The equivalent main program, P,  writes a file, F, of all customer segments satisfying 
the criteria C, and the program Q processes this file as shown in the system diagram 
below: 
 

P Q F
 

 
A variable state subroutine can be created by inverting P with respect to F. 
 
(c)  Q requires a procedure P that will modify the output record  of a sort program before 
it is written to the output file. 
 
 We may view the system diagram of the sort as below: 
 

SortInput P     Modified 
   output

Output

 
 
     The equivalent main program, P,  reads the sorted output file and modifies each 
record, creating a modified output file. 
 
 Here,  P is inverted with respect to both its input and output files.  We say, in this 
case, that P is doubly inverted and depict the situation with diagram below: 
 

SortInput

P

Modified 
output

 
 
The triple lines (instead of the double lines indicating inversion with respect to one file) 
indicate inversion with respect to two files. 
 
(d)  Interactive conversational programs 
 
 To design a procedure to output a response to a terminal input, first design a 
program to process the entire stream of terminal inputs producing a stream of responses 
as shown in the system diagram below: 
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 Inverting the resulting program with respect to the terminal input stream gives the 
desired procedure which we may imagine runs under control of a teleprocessing monitor 
(TM) as shown below: 
 

input 
stream

Terminal
Response 

stream

    Conversational 
  program

   TP Monitor

 
 
(e) Interrupt handler 
 
 To design a procedure to respond to a given interrupt, first design an interrupt 
handler that reads an input stream of interrupts and outputs a stream of responses; then 
invert the program with respect to its input stream to give the desired procedure. 
 
     (2)  Implementation of a hierarchical network 
      
 Problems are sometimes implemented as a network of programs connected by 
serial data streams.  The network can be simplified through inversion as a hierarchy of 
subroutines. 
 
 Consider the linear network below (suggestive of 'pipelining'): 
 

------->S1 P1 S2 SnPn-1Sn-1
  

      
Each of the programs, P2,...,Pn-1 can be inverted with respect to its input file, producing 
the inverted system diagram shown below: 
 

S1 P1 P2 -------
-------

Pn-1 Sn
 

 
 The hierarchical network shown below: 
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can be inverted, producing: 

 

F1 P1

F3

P2

P4 F7

F6P3

 
 
 
 
(3)  Design of data processing systems 
 
 In most data  processing systems, entities have a long life--often years or decades.  
Viewed dynamically, entities--such as a bank customer who makes deposits or 
withdrawals--are  active only briefly; most of the time, the bank customer is engaged in 
other activities having nothing to do with banking.  Let us consider a simple banking 
system where customers may open an account and subsequently make any number of 
withdrawals or deposits.  The structure diagram for any customer is: 
 

Customer

Open 
Account

Account-Body

*

° °Deposit Withdrawal

Customer 
transaction
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When active, a bank customer's state vector must be activated and the program text for 
that customer resumed where it left off previously.   
 
 Program inversion allows us to exploit long-running processes to the full.  We 
design the program text of a bank customer based on the structure of its input stream of 
deposits and withdrawals which may be created over a period of many years as shown 
below: 
 

Customer 
inputs

Customer 
program

 
 
 Then we invert the program with respect to its input stream, and perhaps run the 
resulting procedure under control of a transaction processing monitor for example.  In the 
diagram below, a customer process is activated briefly only when necessary; otherwise, it 
remains suspended.  
 

  

Customer 
inputs

Customer 
procedure

Transaction 
Monitor

 
 
 An information system may be viewed as a network of processes.  Each process 
describes an independent entity in the real world model and is represented by a program.   
By arranging entities of the same type (e.g., the customers in a banking system that 
provides customer checking accounts) into sets, we can arrange the corresponding 
individual programs into an equivalence class:  the program text is the same for all 
entities (customers) in the set; only the  state vector--the local variables of the process 
together with its text pointer--of individual entities (customers) differs.  In the diagram 
below, we show an input stream of transactions for all customers.   

 

Transaction 
stream

Customer 
procedure

Transaction 
Monitor

Customer 
SVs
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The transaction monitor activates the inverted customer program, whose program text is 
the same for all customers.  The program looks up the state vector of the customer-id 
which is stored on disk (together with the state vectors of all customers) and updates it.  
The customer program then returns control to the transaction monitor and is suspended.   
 
 We will be focusing our attention on the design of  information systems in Part 2.   
 
Exercises: 
(i) Read a sequence of 80-character records and print the characters on a line printer 
125 characters per line.  Every input record should have a space appended, and the last 
line should be filled with blanks if necessary. (from C. A. R. Hoare, "Communicating 
Sequential Processes", CACM V21 N8) 
(ii) Implement the program PB and the (inverted program) procedure PAI in Pascal. 
(iii) Implement PB with respect to I, creating the procedure PBI.  Give the structure 
text of  PA and PBI and implement them in Pascal.
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8. Optimization  
 
8.1 Attitude towards optimization 
  
 The word 'optimize' means 'to make the best'  (from the Latin optimum - 'best').  
When we use the term optimization to describe making programs as small and/or as fast 
as possible, it is ill-chosen because in optimizing we may actually make a program bad in 
other ways--make it less intelligible, harder to maintain, and more prone to error.  
 
 Our attitude towards optimization is summarized in the following two rules: 
 
 Rule 1:  Don't do it 
 
 This rule says that program optimization often isn't necessary.  We need a  
quantitative justification for it.  It may not matter whether or not a program uses 10% less 
memory or runs 5% faster.  Optimizing memory isn't important if we have plenty of 
memory available; a 5% savings in time surely doesn't warrant the time and expense of 
optimization if we are only running a program a few times.  
 
 Rule 2:  Don't do it yet 
 
 This rule states that if optimization is necessary, then before optimizing, we 
should begin with an unoptimized design that reflects the problem structure.  Only with 
an unoptimized design can we fully understand the program; and without such an 
understanding, we are likely to introduce logical errors when we optimize. 
 
8.2 Types of optimization 
 
 We can distinguish between three kinds of optimization.  We will focus only on 
the third type, optimization by program transformation, because this type of optimization 
can distort the original, unoptimized program structure that directly reflects the problem 
structure. 
 
1.  Optimization by tuning 
 
 Here we refer to strategies such as the following: 
 -  adjusting a file's block size to effect the best compromise between available 
space and the number of data transfer operations; 
 -  choosing data types to effect the best compromise between file storage space 
and program processing time for data conversion; 
 -  adjusting queue sizes to obtain the best compromise between space 
requirements and device utilization; 
 -  adjusting the number of buffers to obtain the best compromise between memory 
use and database processing efficiency; 
 -  program segmentation to optimize memory via overlays 
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 With the possible exception of the last example above, none of these 
optimizations affects program structure. 
 
2.  Optimization by algorithm 
 
 Sometimes we can improve the performance of an algorithm by refining the 
algorithm itself.  For example, to sort a file of n items into ascending sequence using the 
'bubble' sort algorithm, we make n-1 passes of the file.  In each pass, we 'bubble' one item 
as far to the right as possible by exchanging each successive item with its right neighbor 
if it compares greater.  For example, if our n items are the integers below: 
 

 10  4  5  6  3  8 
 
then, the arrangements below show the result of exchanging after each pass: 

       n = 6          pass 
  4  5  6  3  8  10        1 
       4  5  3  6  8  10        2 
      4  3  5  6  8  10        3 
  3  4  5  6  8  10        4 
  3  4  5  6  8  10        5 

 
We can optimize the algorithm in several ways: 
 -  stop the sort if during a pass, no exchanges were made, instead of making (n-1) 
passes; the 5th pass above would be unnecessary;  
 -  reduce the number of items involved during each pass:  if in the nth pass, the 
leftmost pair swapped was sn and sn+1, then the (n+1) pass may begin with the sn-1 and 
sn item; in the 3rd pass, we could start by comparing the 2nd and 3rd items, since in the 
previous pass, the 1st exchange occurred between the 3rd and 4th items 
 
 Other optimization of the 'bubble' sort are possible;  in each case, the changes in 
program structure reflect a new, optimized algorithm. 
 
3.  Optimization by program transformation 
 
 Here we are concerned with optimizations that could be performed by a good 
optimizing compiler on a well-designed program.  They include eliminating redundant 
assignment operations; optimizing common subexpressions; loop optimization; etc. 
 
 If an optimizing compiler is used to effect program optimizations such as those 
mentioned above, the simplicity and clarity of the original, unoptimized program remains 
the basis of future maintenance activity.  There is no cost to the optimization except the 
extra time that an optimizing compiler may take. 
  
 Often, however, optimization by program transformation is carried out by the 
designer, and we run the risk of increasing program maintenance costs through loss of the 
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initial clarity and simplicity of design.  Let us consider a few such optimizing program 
transformations. 
 
(a)    Ordering of condition tests  
 
 Sometimes, we can achieve reduction in execution speed by carefully ordering 
condition tests in a selection as in the following example: 
 

A person's marital status in the person record of a population Census file 
has the following codes and estimated frequencies: 
divorced - 'd' (4%), widowed - 'w' (10%), married - 'm' (30%), single - 's' 
(55%), other - 'o' (1%)   
We wish to compute the frequency distribution by marital status for the 
categories single, ever-married (married+divorced+widowed) and other. 
 

 The structure diagram for the selection is shown below: 
 

Update 
ms table

ever-married single all other° ° °
<'m' or 'w' or 'd'> <'s'> <'o'>

 
  
In a structure diagram, recall that the ordering of the selection is unspecified.  We might 
code the selection as follows: 
 

type 
 maritalstatus = ('d', 'w', 'm', 's', 'o'); 
var 
 ms: maritalstatus; 
 ethtab:  array[1..3] of integer; 
 
 case  ms of 
's':  ethtab[1] := ethtab[1] + 1; 
'm', 'w', 'd':  ethtab[2] := ethtab[2] + 1; 
'o':  ethtab[3] := ethtab[3] + 1; 
 end 
 

 Without knowing the details of how the case statement is implemented, we cannot 
be certain that its use as shown above will optimize the selection processing. 
 
 The selection can be ordered in order of decreasing frequency (with the greatest 
frequency first)  to minimize the number of condition tests performed as shown below: 
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/*  selection is optimized to minimize number of condition tests made based on */ 
/*  estimated frequencies of marital status codes */ 
if ms = 's' then 
 ethtab[1] := ethtab[1] + 1 
 else if ms = 'm'  then    
  ethtab[2] := ethtab[2] + 1  
  else if ms = 'w' then 
   ethtab[2] := ethtab[2] + 1  
   else if  ms = 'd' then 
    ethtab[2] := ethtab[2] + 1 
    else ethtab[3] := ethtab[3] + 1; 

 
 There is some loss in intelligibility, unless comments are included to indicate that 
the selection has been optimized as shown. 
 
 The remaining three kinds of program transformation considered below optimize 
by reducing program length: 
     
(b)  Simplification of data structure 
 
 Simplification of the data structures on which the program structure is based must 
be done with care since an error or unwise optimization could undermine the entire 
program structure. 
 
 Consider the following description of a record: 
 

A variable-length record (maximum length = 1000) begins with some 
number of spaces followed by words, each of which is separated by one or 
more spaces, and is terminated by a distinct end-of-record code. Each 
word has at least one character and consists only of the upper and lower 
case letters a-z, and single and double quotes. 

 
 The record structure is depicted below: 
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 We can, in fact, simplify the data structure considerably, thereby reducing the 
number of components and the program's length: 
 

Record

Word 
groups

Word Space

Word  
character

*

End-of-record 
character

Word 
group

*

° °

 
 
 We have eliminated the initial iteration of spaces; the iteration of spaces 
following a word; and a word's first character.  We can confidently process records, as 
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long as in the specification, the delimiters between words are limited to spaces and the 
number of spaces at the beginning and between words is unimportant. 
  
(c) Common action tails 
 
 Consider the following problem: 
  

 A bank customer may make a deposit , withdrawal or transfer.  In 
the case of a deposit, the amount is added to the account's balance and 
then a record of the account activity is recorded by executing procedures y 
and z; in the case of a withdrawal, the amount is subtracted from the 
customer balance, and a record of the account activity is recorded by 
executing procedures y and z; in the case of a transfer, the transaction 
amount is subtracted from the first account number and added to the 
second account number on the transaction; following this, a record of 
account activity is recorded by executing procedures y and z. 

  
 Consider the following structure diagram: 
 

Process 
transaction

Process 
deposit

Process 
withdrawal

Process 
transfer

° ° °

bal := 
bal+amt do Y do Z do Y do Z do Y

bal1 := 
bal1-amt

bal := 
bal-amt

bal2 := 
bal2+amt    do Z

 
 We notice that for each transaction type, we execute procedures Y and Z 
subsequent to updating the customer accounts involved.  We could optimize as shown in 
the following structure text: 
 

PROCESS-TRANS sel 
 bal := bal + amt; 
1: do Y; 
 do Z; 
PROCESS-TRANS   alt 
 bal := bal - amt; 
 goto 1; /* common action tail */ 
PROCESS-TRANS alt 
 bal1 := bal1 - amt; 
 bal2 := bal2 + amt; 
 goto 1;     /*  common action tail  */ 
PROCESS-TRANS end 
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 The use of the goto statement is deliberate--the original selection structure is 
preserved.  It would be less intelligible to restructure the selection based on the 
optimization as shown below: 
 

PROCESS-TRANS   seq 
 PROCESS-TRANS-SEL sel 
  bal := bal + amt; 
 PROCESS-TRANS-SEL  alt 
  bal := bal - amt; 
 PROCESS-TRANS-SEL alt 
  bal1 := bal1 - amt; 
  bal2 := bal2 + amt; 
 PROCESS-TRANS-SEL  end 
 do x; 
 do y; 
PROCESS-TRANS   end 

 
If a change is made in the processing of any of the three transaction types, we would 
likely have to rewrite the component. 
 
 
(d)    Generalization   
 
 Another way to handle two or more identical lines of code that  occur in more 
than one place in a program is to generalize by making the identical lines of code into a 
procedure.  Thus, in the common action tail example above, we could make the 
procedure shown below: 
 

 procedure otherprocessing; 
 begin 
  do x; 
  do y; 
 end;  

 
 The component to process the transactions is now: 
 

PROCESS-TRANS sel 
 bal := bal + amt; 
  do otherprocessing; 
PROCESS-TRANS   alt 
 bal := bal - amt; 
 do otherprocessing; 
PROCESS-TRANS alt 
 bal1 := bal1 - amt; 
 bal2 := bal2 + amt; 
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 do otherprocessing; 
PROCESS-TRANS end 
 

 Optimization by generalization should be sharply contrasted with the 
generalization that occurs in bottom-up design, where we build a more abstract machine 
in order to include operations needed by the problem environment (see section 2.4).
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9.   Concluding remarks on JSP: 
 
9.1 JSP and the Design of Programming Languages 
 
 We have seen a number of cases where we have had to invent structure text 
constructs to implement the design methods of JSP because the control structures were 
not available in Pascal.  JSP suggests that programming languages should include 
features that directly implement the JSP design method.  
 
 Let us review these features briefly: 
 
 (1)  We need a posit and admit control structure and a quit statement to express 
backtracking 
 
 Although we used a goto statement to implement backtracking, this was not an 
unrestricted goto statement of the type that Dijkstra and others have warned against; it is 
a carefully limited goto that is semantically equivalent to the admit structure text. 
 
 (2)  We need a coroutine facility that permits one process to be suspended while 
control is passed to the appropriate point of the invoking process, and that permits the 
suspended process to be invoked again and resumed immediately following the point at 
which it last relinquished control.   
 
 Since such a coroutine facility is not available in many languages, including 
Pascal, we have used a variable state procedure to model the suspend-and -resume 
mechanism.  As was mentioned in section 7.3, for Pascal just as for COBOL and PL/1, 
we need a special-purpose compiler that generates nest-free Pascal code in order to 
resume at a point within a nested block, such as an iteration.  Although the 
implementation of nest-free code generators is part of JSP implementation, we will not 
discuss nest-free code further beyond reiterating the following points: 
  
 - Special compilers can be written to produce nest-free code to permit 
implementation of variable state subroutines; 
 
 - The goto statements generated in nest-free code are not 'harmful' since they are 
carefully controlled and semantically equivalent to the nested block structure that they 
implement in unnested form. 
 
 - The essence of the 'suspend-and-resume' mechanism is that a procedure 
remember its state vector (local variables and text pointer).   Objects in OOP languages 
do remember their state, or at least their local variables.  OOP languages that support 
concurrent processes directly remember their text pointer as well; in other OOP 
languages, the text pointer must be modeled by a local variable, as described in the 
chapter on program inversion. 
 
9.2 Simple programs and serial data streams 
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     JSP provides a method for designing simple programs.  A simple program, shown 
below, has the following characteristics: 
 

I  O P
 

 
     (a) a fixed initial state 
     (b) program inputs and outputs are serial files  
     (c) input and output files have an explicit structure 
     (d) input structures define the domain of a program; output  structures define the range 
of a program 
     (e) input and output data structures are compatible in the sense that they can be 
combined into a single program structure 
 
  We have seen that more complex problems can often be decomposed into simple  
programs, which can be designed using JSP and optimized by inverting one or more 
programs with respect to its (their) data file(s).  
 
  Jackson proposes that the simple program--rather than the  module of modular 
programming or the control structure of  structured programming--provides a reliable, 
high-level design  component for software engineering.  In particular, serial data streams 
form a simple and effective interface--a barrier that enforces a design discipline--between 
programs.   
 
 By a serial data stream we do not mean a sequential data set in which 'next' is 
based on the value of a record identifier.  Instead, the idea of seriality is that of a physical 
seriality of data produced by some process.   
 
 Examples of serial data streams include: 
 
 -  a stream of messages input from a terminal (they reflect the temporal sequence 
of a user's responses in a conversational dialogue) 
 -  the sequence of records in a physically serial file (some process created the 
physical ordering of the file)  
 -  a stream of data base segments accessed in a sequence of database calls (the 
stream reflects the process of accessing a specified set of data)  
 -  a sequence of invocations of a procedure (the sequence reflects the process of 
executing the invoking program) 
 -  a sequence of characters printed out in a memory dump (the sequence reflects 
the program's access of memory locations) 
 
 When we come to view system development (JSD) in the next part of the text, we 
will see that a system can be specified as a network of entity model processes, with each 

 120



model process described (and implemented) by a simple program that reads a serial data 
stream connecting it with the real world. 
 
 Thus, the idea of a simple program in JSP is very close to the idea in the object-
oriented design paradigm of objects communicating with each other by passing 
messages.  Over time, the sequence of messages read by an object constitutes precisely a 
serial data stream.  
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10.   Jackson System Development (JSD): An Overview 
 
10.1   A Simple Example:  Student Loan System 
 
 Program inversion extends the range of JSP applications into   various areas such 
as coroutine design, implementing a system of   simple programs as a hierarchy of 
subroutines, on-line programming and systems design.  We will now look at JSD, a 
method for design information systems. 
 
 Consider the following description of a student loan system:11 
 

A university gives loans to students.  Before getting a loan, there is an 
evaluation process after which agreement is always reached.  A TE 
transaction records each step of the evaluation process, and a TA 
transaction records the overall loan agreement.  A student can take any 
number of loans, but only one can be active at any time.  Each loan is 
initiated by a TI transaction.  Then, the student repays the loan with a 
series of repayments.  Each repayment transaction is recorded by a TR 
transaction.   Finally, a loan is terminated by a TT transaction. 
 
Two output functions are desired: (1) an inquiry function that prints out 
the loan balance for any student, and (2) a repayment acknowledgment 
sent to each student after payment is received by the university. 
 

 The university loan office decides to implement the student loans on a   single 
processor.  Inquiries should be processed as soon as they are received.  However, 
repayment acknowledgments need only be   processed at the end of each day. 
 
 Notice that each student who receives one or more loans generates a stream of 
data over a long-period of time, perhaps many years.  We can write a program to process 
the whole data stream, if we can describe its structure, just as we can write a program to 
process the data input by a user at a terminal.  A key feature of many information systems 
is that they consist of slow, long-running processes.  JSD takes a bird's eye view --a 
holistic view-- of such processes, describing the entire serial file even though it has not 
yet been produced. 
 
10.2  Modeling Phase 
 
 JSD consists of three main phases: the modeling phase; the   network phase; and 
the implementation phase.  In this section, we will look at the modeling phase. 
 
 The modeling phase consists of three steps: 
 
Step 1:  Entity/action step 

                                                 
11 adapted from [Ja75], Ch. 11 
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 The first step in modeling a real-world system, is to  decide on what entities are 
relevant in the system.  An entity is any object--a person or thing--that is important in the 
system we are modeling.  Looking at the actions that occur in the system helps us to 
decide what entities are important.  An action is always associated with an entity.   
 
 Actions have the following characteristics: 
 
 (1)  An action takes place at a point in time 
 
 The evaluation process, taken as a whole, is not an action, since it takes place 
over a period of time and consists of individual subactions. 
 
 (2)  An action must take place in the real world outside of the system. 
 
 The system action of issuing a 'loan repayment acknowledgment' is not an action, 
since it is an action of the system.  A loan repayment by the student is signified by a 'loan 
repayment action', so one cannot suppose that a 'loan repayment acknowledgment' 
somehow models a student's loan repayment in the real world.  
 
 (3)  An action is atomic, cannot be divided into subactions.  
 
 The evaluation process, taken as a whole, is a composite action consisting of 
some number of evaluation subactions.  Each 'evaluate' subaction may be an action (of 
bank or of student). 
  
 Entities have the following characteristics: 
 
 (1)  An entity performs or suffers actions in time.   
 
 A statistic, such as population of U.S. in 1980 isn't an entity, nor is U.S. or the 
year 1980 or any other object in a static database;  A bank that issues loans over time or 
a student who makes loan repayments over time are objects that perform time-ordered 
actions.  
 
 (2)  An entity must exist in the real world, and not be a construct of a system that 
models the real world 
 
 Thus, a 'Loan repayment acknowledgment' issued by the system is not an entity. 
 
 (3)  An entity must be capable of being regarded as an individual; and, if there are 
many entities of the same type, of being uniquely named. 
 
 A student is a possible entity.  There are many students (who belong to the entity 
type or class, student), but each individual can be named. 
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 We begin by making a list of candidate entities and actions.     For each candidate  
action, we decide what entity the action is associated with, and provide a list of attributes 
associated with the action.   
 
 Here are the candidate lists: 
 

Entities/Description:  
                     
student 
system 
university                   
loan                       
student-loan                
 
Actions/Attributes: 
 
evaluate -action of university? (university performs the evaluation);  
action   
 of student? (student is evaluated)    stud
   attributes:  student-id, loan-no, date of evaluation, remarks 
agree - action of university? (university agrees to loan);  action of student 
?  (agrees to loan) 
   attributes: student-id, loan-no, date of agreement, amount of loan, 
interest  rate, repayment period) 
make loan - action of university 
  attributes: student-id, loan-no, date of loan, loan amount, interest rate,   
 repayment period 
initiate - action of university? (university initiates loan); action of student? 
  
 (student initiates loan); action of loan? (is initiated) 
   attributes:  student-id, date initiated 
repay - action of loan? (loan is repaid); 
 action of student? (student repays the loan); 
   attributes: student-id, date of repayment, amount of repayment 
terminate - action of loan (loan is terminated);   
   attributes:  student-id, date of termination, remarks 

 
   In examining the actions, "make loan" seems vague with respect to its time.  Is a 
loan made when it is agreed to or when it is goes in effect?  Probably the former and 
effective date would be part of the agreement.  Two actions, agree and initiate, are 
specifically mentioned in the description, and "make loan" seems to encompass both, so 
we eliminate "make loan" from our action list in favor of "agree" and "initiate". 
 
 We eliminate "university" from the candidate list of entities, because the system 
clearly is not about (is not interested in) the university, how it is administered, who the 
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loan officers might be (except, perhaps, in relation to who authorized a loan to be made), 
etc.  We may say that "university" is outside the model boundary or OMB.   
 
 Student, student-loan, and loan give us pause.  Students are evaluated before they 
receive a loan, and the system should model (record) the evaluation process.  Hence 
evaluation occurs before there is any student-loan.  We decide to eliminate student-loan 
in favor of student, where student has the meaning in the loan system of students 
receiving one or more loans from the university.  Loan is well-defined and could be 
considered, with student, an entity.  What actions does a loan perform or suffer over 
time?  Loans are agreed to, initiated, repaid and terminated.  What actions do students 
perform or suffer?  Students are evaluated, agree to a loan, initiate the loan, repay the 
loan and terminate the loan.  The structure of a loan is included in the structure of 
student, and there is no need at present to include loan as a second entity, although this 
may be considered in later.  We reject loan as an entity. 
 
 After considerable discussion of these and other points with the university loan 
office, we decide finally that we have only one entity of interest: student with actions 
evaluate, agree, initiate, repay and terminate.  Our final entity and action lists are as 
follows: 
 

Entities/Description:  
                     
student                                      
 
Actions/Attributes: 
 
evaluate -action of student;     student? (st
   attributes:  student-id, loan-no, date of evaluation, remarks 
agree - action of student  
   attributes: student-id, loan-no, date of agreement, amount of loan, 
interest  rate, repayment period) 
initiate - action of student   
   attributes:  student-id, date initiated 
repay - action of student 
   attributes: student-id, date of repayment, amount of repayment 
terminate - action of student  
   attributes:  student-id, date of termination, remarks 
 

 
Step 2:   Entity structure step 
 
 The behavior of an entity in the real-world is modeled in terms of the actions it 
performs or suffers over time.  The second step of JSD expresses the constraints in the 
ordering of an entity’s actions with a structure diagram.   
 
     The entity structure diagram for a student is shown below: 
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student

agree

 initiate  repay part  terminate

evaluate

repay

*

*

   evaluate part loan part

loan *

 
  
    The exact meaning of this diagram is: 
     *  The first action suffered by a student is the evaluation part, which consists of zero 
or more evaluate actions. 
     *  The next action of student is agree. 
     *  Next comes the loan part, which consists of zero or more  loans. 
     *  Each loan is a sequence of initiate action, followed by an iteration of repay actions, 
followed by a terminate action. 
      
     Notice that the leaves of the tree are the atomic actions of the entity (analogous to 
elementary actions in a  program structure).   
 
Step 3:   Model process step 
 
 In the last step of the modeling phase  we create an executable model process for 
each entity in the system.  Each model process is described with a system diagram. 
 
 Our information system models each real-world entity.  We are not just 
simulating entities artificially, using some statistical techniques for example; we are 
modeling each entity precisely as it exists in the real world.  Therefore, there must be a 
connection between the entity in the real world and the entity model process in our 
information system. 
 
 Usually, the connection is by serial data stream, in which the real world entity 
produces a message for each action performed (or suffered).  For each student action in 
the real world, a transaction records the action in the student loan information system.  
Viewed over time, the set of messages recording student actions constitutes a serial data 
stream.  
 
 We can depict the serial data stream connection between student entity and the 
student in the information system as shown below: 
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 S  STUDENT-0   STUDENT-1

EXTERNAL WORLD SYSTEM

 
 We use the suffix "-0" to the student entity to indicate the abstract student entity 
in the real world, and the suffix "-1" to indicate the realization of this abstraction in our 
information system. 
 
 What is the structure of the serial data stream?  The entity   structure diagram 
describes its structure.  The entity model process for a student can be described by a 
simple program that reads a serial data stream.  We can use JSP to write the program text 
for this process.  It is shown below: 

 
 STUDENT-1 seq 
  read S; 
  EVAL   iter (while TE) 
   process TE; read S 
  EVAL  end 
  AGREE  seq 
    process TA; read S 
  AGREE  end      
  LOAN-PART iter (forever) 
   INIT   seq 
      process TI; read S 
   INIT    
   REPAY  iter (while TR) 
    process TR; read S 
   REPAY  end 
   TERM   seq 
      process TT; read S 
   TERM  end 
  LOAN-PART end 
 STUDENT-1 end 
 

 Although it is a slow-running system, our information system is a real-time 
system.  We collect information as it is furnished by the real-word process.  Our entity 
model process is synchronized with the actions of the real world entity.  Recall that the 
text pointer is part of the state vector of a model process's program text.  If our text 
pointer points to the repay component of a student's process text, then an 'E' (evaluate), 
'A' (agree) or 'I' (initiate) transaction on the input stream for this student is clearly 
unacceptable and must be recognized as an error. 
 
 Error handling is defined in this step to filter out errors so that the realized model 
simulates the real world faithfully. We may view the input system as being interposed 
between the real world entity and our system, as shown in the SSD below: 
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  STUDENT-0   STUDENT-1INPUT 
  SUB-SYSTEM

VS

    ERRORS

   SV

 
The function of the input subsystem is to ensure that only valid transactions, indicated by 
the data stream V,  are input to the specification of STUDENT-1.  Let us suppose that in 
our student loan system, we choose to simply reject those transactions that are not valid 
for the given state of a particular student's model process.  We can examine the current 
state of the student model process by inspecting its state vector.  We will use a variable, 
state, to keep track of a student's current state, initializing it to 'eval' when a student 
model process is first instantiated.  We will assume that state and the rest of a student's 
state vector reflect  the point at which read V operations occur  in STUDENT-1's text as 
follows:  Either an 'E' or an 'A' transaction (evaluation or agree action) is acceptable for a 
new student model process initially.  After an agree transaction has been processed, state 
must be set to 'init'.  The only acceptable transaction is an 'I' (initiate loan).  After 
processing the initiate loan transaction, state is set to 'repay'.  Acceptable transactions are 
either 'R'  or 'T' (repay or terminate).  After a 'T' transaction has been processed, state is 
set to 'init', indicating that the student process is expecting to initiate another loan 
following termination of the last one.    

 
 Referring to STUDENT-1's process text, we can compose the following state 
transition diagram containing labeled states corresponding to the components of the 
STUDENT-1 process (EVAL, AGREE, INIT, REPAY and TERM), and the acceptable 
transactions for each state. 
 

          EVAL          AGREE  INIT

'I'           'R' or 'T'

 REPAY

'E' or 'A'

TERM

   'I'  
 
 

 The program text for the input sub-system is given below: 
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INPUT-SUBSYSTEM  seq 
 read S(transrec); 
 FILTER iter  <while not eof> 
     getsv(student-id); 
     ACCEPT-TRANS   sel  <trans-code valid for student-id current state> 
    write V(transrec); 
     ACCEPT-TRANS  alt 
  ACCEPT-TRANS  end 
  read S(transrec); 
 FILTER  end 
INPUT-SUBSYSTEM  end 

 
 
10.3 Network Phase 
                           
 In the network phase, we connect model processes and functions in a single 
system specification  diagram (SSD).  In our system, we have one entity and two 
functions.  The SSD is shown below: 

 

 S   STUDENT-1

E R

Ack
   SV

 Payment 
 acknowledgement 
 lister  (PAL)

Daily 
list

DT

Loan balance 
enquiry function  

  
The loan balance inquiry function (LBE) is connected to the Student-1 process by state 
vector (SV) connection.  In this type of connection, one process can examine the state 
vector of a second process.  The double lines indicate that an inquiry 
process, over its life, will examine many student processes. 
 
 The function to produce the student acknowledgments data stream (ACK) is 
embedded in the student-1 process in the repays component as shown below: 
 
  DT is an input signal at the end of the day--a daily time marker--that tells the 
payment acknowledgment lister (PAL) function to begin.  The ACK and DT data streams 
are rough-merged, that is, we don't know precisely whether a repayment acknowledgment 
will appear on today's or tomorrow's daily list. 
 
 The loan balance inquiry function (LBE) is designed using JSP as shown below:   
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   get STUDENTSV(student-id); 
   write 'loan balance for ', stud ent-id, 
      ' is ', balance' 
   read E; 
LBE-BODY                                          

E  STUDENT-1
SVs

   STUDENT-1 
        SV

*
 Enquiry

*

  R

Reply

(i) input and output 
   data structures:

 Loan balance 
 enquiry function

C-enquiry 
P-reply

*

(iii)  list of operations: 
1 - write 'loan balance for', stud ent-id, 'is', balance 
2 - get STUDENT SV (student-id) 
3 - read E 
 
(iv)  elaborated program structure and text:

 3

   2  1  3

 LBE

 LBE-body

 C-enq 
 P-reply

 *

LBE seq
 read E; 
 LBE-BODY itr (forever)

end
LBE end

(ii) basic program 
     structure

*

 
10.4  Implementation phase 
 
 First we examine the timing constraints of the system.  The problem description 
for our system states that inquiries are to be answered on-line but repayment 
acknowledgments at the end of the day.   
 
  We then consider possible hardware and software for implementing our system.  
We decide to implement all student processes on a single processor.  Each student 
process could have been allocated a dedicated processor. 
 
 Based on hardware and timing constraints, we design a system implementation 
diagram (SID) shown below: 
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  Scheduler
 All S,
   Enq., 
   DT

 stud
SVs

Enquiry
  reply

 STUDENT-1
 Loan balance 
     enquiry 
    function 

PAL    Daily 
   lister

 
 
  In the SID, all of the serial data streams are input to the scheduler process.  Note 
that the all student processes have an identical structure text; only their state vectors are 
different.  Consequently, we can separate the state vectors of student processes from their 
process text--this separation is called state vector separation.  The set of state vectors 
constitutes the data base of our student loan system. 
 
 The student-1 process is inverted with respect to its data stream, S.  Student-1 is 
called by the scheduler to process a transaction, and then suspended when it has 
completed the processing of the transaction, with control returning to the scheduler.  Note 
that the scheduler must access the student's state vector corresponding to the student-id 
on the input data stream, and for saving the updated state vector on completion of 
processing the transaction. 
 
 The loan balance inquiry is invoked by the scheduler when it has read an inquiry. 
 
 The repayment acknowledgment lister (PAL) is inverted with respect to both of 
its inputs, the repayment acknowledgment data stream and the daily marker.  PAL is 
invoked by Student-1 whenever Student-1 processes a repayment transaction.  The 
scheduler invokes PAL directly when it receives a DT and this triggers the daily listing. 
 
 The scheduler process is designed with JSP, and is shown below: 
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 2

 1
Loan balance  
enquiry  
  (LBE)

Student 
loan part

 1

Day-Body  DT

   Scheduler

 Day
*

    6

*

Records

Record

 3  4 5

°  °

List of operations: 
 
1-read input 
2-call LBE(inrec) 
3-get SSV(student-id) 
4-call student-1(srec, ssv) 
5-put SSV(student-id) 
6-call PAL(DT)

 
 
 The exact meaning of the scheduler structure diagram is as follows:  On any given 
day, records from the serial data stream (loan balance inquiries and student loan 
transactions) are read and processed in real-time.  At the end of the day, a daily time 
marker--perhaps a signal to the system from the operator--is input, and the payment 
acknowledgment lister program is invoked.  It processes payment acknowledgments that 
have been previously generated in real-time whenever a student repayment is made and 
stored in a buffer. 
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