

Introduction to
Jackson Design

Method:
JSP and a little JSD

Nicholas Ourusoff

Placed into the public domain by Nicholas Ourusoff, 2003

Table of Contents

Introduction
Preface
Part I: Jackson Structured Design (JSP)
1 Program Structure
 1.1 Introductory remarks; 1.2 An example: Printing a multiplication table;
 1.3 Structure diagrams, program and data structure; Exercises
2 Jackson Structure Diagrams

2.1 Jackson Structure Diagrams; 2.2 Examples; 2.3 Program structure based on
data structure; 2.4 Elementary versus generalized components; Exercises

3 JSP: Basic Design Method and the Single Read-ahead rule
 3.1 Basic Design Method; 3.2 Single Read-ahead Rule; 3.2.1 Pascal file
 processing: non-text files; 3.2.2 Pascal file processing: textfiles
4 Multiple Data Structures
 4.1 Processing hierarchical record sets; 4.1.1 Getting it wrong--A Cautionary
tale; 4.1.2 Getting it right; 4.2 Group-id rule; 4.3 Collating; Exercises
5 Error processing
 5.1 Introduction; 5.2 Error versus invalid data; 5.3 Error processing design
 objectives; 5.4 Valid and invalid data; Exercises
6 Recognition Problems and Backtracking
 6.1 Multiple read-ahead rule; 6.2 Backtracking; 6.3 Backtracking (within
 iteration); 6.3.1 quit in iteration; 6.3.2 Backtracking in iteration; Exercises
7 Structure Clashes and Program Inversion
 7.1 Structure Clashes; 7.2 Program Inversion; 7.3 Implementation of inversion;
 7.4 Significance of program inversion; Exercises
8 Optimization
 8.1 Attitude towards optimization; 8.2 Types of optimization
9 Summary
 9.1 Programming languages and compilers; 9.2 Simple program and serial data
 streams

Part II: Jackson System Development (JSD)
10 Jackson System development (JSD): An Overview
 10.1 A Simple program: Student loan system; 10.2 Modeling phase;
 10.3 Network phase; 10.4 Implementation phase

 2

Introduction

 There are two reasons for writing this book. First, I believe that JSDOOP--
coupling the object-based modeling of JSD with object-oriented implementation--is a
promising method for information system development. Second, I believe the clear and
seminal thinking of Michael Jackson about program and information system design
methodology deserves more attention than it has received in the United States; and his
contributions have often been misrepresented.1

1. The promise of JSDOOP

 In the Spring of 1991, I experimented with implementing a JSD specification into
an object-oriented programming (OOP) language (Smalltalk). JSD seemed to me then to
be object-based in the sense that it begins with a model of the real world in terms of a set
of entities (objects), their actions (behavior), and constraints. In fact, as I found later,
JSD is object-based in the most fundamental sense--the structure of a program or
information system is based on the structure of the problem. This is the single most basic
principle throughout Michael Jackson's writing. As John Cameron puts it:

"Jackson System Development (JSD) and Object-Oriented Design (OOD)
have one major--arguably central--principle in common; namely that the
key to software quality lies in the structuring of the solution to a problem
in such a way as to reflect the structure of the problem itself. There
should be a simple and demonstrable correspondence between a (real
world) component of the problem and a (software) component of the
solution. The two methods also use similar concepts to describe the
problem domain (or 'real world'). It is considered to consist of identifiable
objects ('entities' in JSD) and operations that are either performed or
suffered by these objects ('actions' in JSD}."2

 My investigations showed that indeed a JSD entity mapped into a Smalltalk
object, with JSD actions mapping into methods and an entity's state vector into an
object's instance variables.

 There is overwhelming evidence that JSD specifications can be directly
implemented in OOP even without proving the concept by implementing JSD
specifications:

 (1) When we examine what an entity is in JSD, we find that it is consistent with
an OOP object.
 A JSD entity has the following properties:

1 As an example, in one of the articles surveying OOD in CACM, Oct 1991, JSD is said to be an acronym
for "Jackson Structured Design". In fact, JSD stands for "Jackson System Development". More
importantly, anyone familiar with Jackson's methodology knows that Jackson argues forcefully against
structured design methodology which is associated with functional decomposition.
2 "JSD and Object Oriented Design" by J. R. Cameron and A. Birchenough in [Ca89], p. 305.

 3

 (a) entities of the same type form a class; the program text for all individual
entities is the same;
 (b) an entity has different states, corresponding to different actions it performs or
suffers over time; the state vector of an entity consists of all of its local variables and a
text pointer to its process text;
 (c) associated with each action of an entity is process text that models that action
in the real world;
 (d) each entity may also have connected to it additional functions
 (e) entities in the real world communicate with entity process models by
messages (serial data stream) that transmit real-world information about actions that an
entity performs or suffers

 In total, all of these properties are consistent with the objects in OOP languages.
So, an entity should map easily into an OOP object.

 (2) JSD specifications are in principle executable, that is, the program text can be
constructed from an entity's structure and the structure of functions superimposed on the
initial network of entities using JSP. Implementation is by program transformation, of
which there are three main techniques:

 (a) writing process texts in a form which allows them to be easily suspended and
reactivated so that their execution can be scheduled explicitly;

 (b) separating process state-vectors from their process text, so that only one copy
of the process text need be kept of each type of process, while as many copies of state
vectors are kept as there are instances of the entity;

 (c) breaking process texts into pieces which can be more conveniently loaded and
executed in a conventional environment

 But all three techniques can be readily implemented simply by using an OOP
language as follows:

 (a) In an OOP, entities are activated whenever a message is sent to them, inactive
otherwise. They remember their state, and this can certainly include their text pointer.
Thus, I see no need for the program inversion, the transformation of a program into a
variable state (resumable) subroutines.

 (b) Any instance of an OOP class inherits the methods of that class; in other
words, the program text of instances is stored once as part of the object class, not with
each instance.

 (c) Finally, OOP methods are precisely the dismemberment of the process text
into convenient modules--we typically have a method for each action and for each
function associated with an entity.

 4

 Thus, although JSD has its own implementation methods, object-oriented
programming (OOP) languages have features that make it very tempting to discard JSD's
implementation methods in favor of a direct mapping into an OOP language.

 (3) OOP objects communicate with messages

 In JSD, the connection between an entity in the real world and an entity in an
information system is usually by serial data stream connection, in which the real world
entity produces a message for each action performed (or suffered).

 In OOD, objects communicate by messages (a serial data stream). Since state
vectors are part of an object, state vectors are inspected by sending messages as well.

 In summary, JSD specifications are object-based. The implementation of JSD
specifications are more naturally implemented with an OOP language, which contain the
essential features needed to implement a JSD network of communicating entity
processes.

2. Jackson's Contributions to Design Methodology

 Michael A. Jackson has made original contributions to program and information
systems design methodology. He originated the program design methodology known as
Jackson Structured Programming (JSP)--his book, Principles of Program Design (1975)
has been rightfully called a classic. Building on the ideas of JSP, he developed together
with John Cameron and co-workers, the Jackson System Development (JSD) method for
designing information systems.

 Jackson's thinking about program and information systems design was often at
odds with prevailing opinion. In the early 1970's, Jackson advised against flowcharts as a
program design tool and invented Jackson structure diagrams. With Dan McCracken he
early articulated dissatisfaction with the traditional life cycle concept, arguing that it was
stultifying, and presented iterative prototyping as an alternative. He sharply criticized
top-down, functional decomposition, arguing that we should first deal with what the real-
world is about, and only later deal with what a system is supposed to do. Whereas data
modeling results in a static model, Jackson argued that information systems should model
the real world dynamically: JSD models the actions of entities--their real-time behavior.
He pointed out that stepwise refinement doesn't provide a method. In contrast, his
constructive method provides checks at each step on the correctness of design. Finally,
he suggested that formal proofs of information systems are unlikely to be convincing
because of their length, and that establishing correctness of a specification--a
specification that can be directly executed after suitable correctness-preserving
transformations--is a more promising approach to software validation.

 Jackson is at his pedagogical best reasoning qualitatively about programs and
systems. He instructs us through examples. He shows us recurring design dilemmas,

 5

and teaches us how to resolve them. We are persuaded of each of his discoveries about
program design. His unifying insight that programs and systems both model problem
domains led him to extend the main ideas of JSP from the domain of programs to that of
systems.

 In the first phase of JSD, the developer specifies a model, based on discussions
with the user, that reflects the structure of the problem domain in terms of the behavior of
real-world entities. The specification leads directly--seamlessly--to an entity's program
text. JSD is object-based.

 Jackson is a 'structurist'. He takes a static "bird's eye" view of a program or
entity process, arguing against the error-prone flow-of-control mentality that asks "What
happens next?", asking instead "What is the underlying structure of the problem?" New
control structures and compiler methods are needed to preserve the structural integrity of
programs that require backtracking and inversion. If software must be optimized for
performance purposes, this should be done only after the design reflecting the problem
structure has been completed.

 JSP and JSD are grounded in the simple qualitative notions of serial data stream,
sequential process, and regular expression. Jackson's ideas have a strong affinity to those
of C. A. Hoare, and JSD has been shown to be theoretically consistent with Hoare's
investigations of parallel processing.

 Jackson's work has had a seminal influence on the research of others (e.g.,
Cameron, Sanden, Zave) and on program and information systems design pedagogy in
Europe and elsewhere.

 Jackson's original investigations of information systems lead us to ask, 'Are not
information systems--models of communicating sequential processes--fundamental
objects of study in computer science?'

 6

 Preface

 This text evolved from a long-standing interest in Jackson methodology that
began when I learned, as a programmer-analyst at the World Health Organization, to use
JSP to specify programs that were subsequently coded by other programmers. Later, I
practiced JSP as a programmer involved in validating population census data for Senegal
and Guiné-Bisau. I first taught JSP as part of a course in program design (1979), and
later gave a full course in JSP (1986). I taught elementary JSD as part of courses in
systems analysis (1985), in management information systems (1988-89), and in
introductory computing (1991). During the Fall of 1991 while a visiting lecturer at
Petrozavodsk State University (Russia), I prepared a set of lectures on JSP and JSD in a
course on programming systems that I team-taught with Dr. Anatoly V. Voronin of the
Department of Applied Mathematics and Cybernetics. I gave a workshop in Jackson
methodology at the ACM SIGCSE Technical Symposium in March, 1992.

 JSP is teachable. Many programmers have expressed their experience that JSP
gave them insights about program design that they never had before--for the first time,
they understood how to design programs that they had been writing without really
understanding them. JSP can and should be taught in any computer information systems
(CIS) curriculum as part of the first and second courses in programming. JSP is
language-independent, and can be taught in any introductory programming course. JSD
should be taught after JSP, as a first course in information systems design or software
engineering.

 A data model can be derived from a JSD specification. Data is associated with
actions (events) of an entity process; the data constitutes the state vector of the entity
process. Although data models, such as the relational model, can be taught
independently of systems development, database design is properly understood, not as a
starting point for modeling an information system, but rather as part of the
implementation phase of system development.

 In the Spring of 1991 I explored object-oriented design with some students. I had
the intuition that JSD entities and actions were closely related to object-oriented objects
and methods, and I used this seminar to implement a JSD specification in Smalltalk.

 JSD is an object-based method of analysis. A JSD specification can be
seamlessly implemented using an object-oriented programming language: entities,
actions, and attributes of a JSD specification map into objects, methods and instance
variables of an OOP language. I have termed the method of implementing a JSD
specification using an OOP language "JSDOOP".

 7

0 Introduction

 In the chapters that follow, we will explore how to design programs and develop
information systems. The approach we use is the software development methodology of
Michael Jackson. In fact, the methodology is one, but is known by two acronyms: JSP,
Jackson Structured Programming, a method for designing programs; and JSD, Jackson
System Development, a method for designing information systems. JSD evolved from--
may be viewed as a superset of--JSP.

 JSD is object-based, that is, JSD models the behavior of the objects of interest in
a user's problem domain. A JSD specification is not some set of abstractions that only
programmers and analysts can understand, but consists of the same objects that the users
of the system know from their day-to-day activities. This is the essence of what object-
based means. The third part of these lectures deals with coupling a JSD specification with
object-oriented implementation--what I have termed JSDOOP. We present examples
mapping a JSD specification into an implementation using the object-oriented
programming language Smalltalk.

 Michael Jackson invented JSP from 1972-74 and JSD with John Cameron and
other colleagues who worked for Michael Jackson Systems, LTD during the late 1980s.
Jackson has written two books, "Principles of Program design" in 1975, which describes
JSP, and "System Development" in 1983 which describes JSD. Another primary source
material for JSP and JSD is "JSP & JSD: The Jackson Approach to Software
Development" by John Cameron (1983 and 1989). Other sources on JSP and JSD may
be found in the bibliography.

 Jackson's writing excels in clarity and expository approach. If you are interested
in understanding Jackson methodology, you cannot do better than to read his own works.

 We will start with JSP first.

1 Program Structure

1.1 Introductory Remarks

 At the outset, it is worth taking note of several themes in Jackson's thinking:

 (1) Design is about structure, about the relation of parts to the whole. The basic
function of program flow charts--especially during the 1960's and early 1970's--was to
show the flow of control in a program. A flow chart examines the dynamic
representation of a program: "What happens next?" In Jackson's thinking, the design of a
program follows from the static structure of a program's text: "What is the relationship of
parts to the whole?" Since program design is concerned with program structure rather
than with program execution, we shouldn't use flow-charts as a tool for designing
programs.

 8

 (2) There is a difference between getting a program to work and getting it right.
A program may work, but may be wrong--it may be difficult to read, may not model the
problem to be solved, may be difficult to maintain.

 If a program is right, e.g. it has the correct structure, it will be easier to read and
maintain. And, a program coded from a correct design is quicker to test, since there will
be fewer logic errors requiring redesign.

 (3) JSP is a constructive design method. By the phrase "constructive design
method", we mean that steps are defined and guidelines given at each step to check the
correctness of the design so far.

 In the 1960's, we used modular programming as a design method. But what are
the criteria for deciding on what becomes a module? Unfortunately, there is no decision
procedure to guide the designer in the choice of modules.

 Likewise, In the 1970's, step-wise refinement was proposed as a design method
by E. Dijkstra. Design proceeded by top-down decomposition using the control
structures of structured programming (sequence, selection and iteration). But how do we
decompose a problem top-down? There is no decision procedure to guide the designer.
Moreover, the biggest decomposition decision must be made right away--the first
decomposition--when we have little experience with the problem at hand. Finally, we
may question whether stepwise refinement constitutes a method, since it doesn't provide
decision criteria to guide the designer during each step of the design.

 Like step-wise refinement, JSP, as the "SP" in "JSP" indicates, is a structured
programming methodology, e.g. it relies heavily on control structures for sequence,
selection and iteration; however, it is not a top-down, but rather a constructive method
in which there are criteria that guide the designer at each step of the design process. In
JSP we construct a model of the task to be solved in the form of a data structure. This
data model guides the design of the program.

 (4) Jackson gives us a rule about optimizing programs for efficiency. The
rule is as follows:

 Don't optimize!
 If you have to, do it as the last step, after you have designed the program
properly.

 The reasons for the rules about optimization are (1) optimization is often
unnecessary, and (2) optimization distorts the structural correspondence between a
program and the problem it models. Thus, optimization tends to obscure the meaning of
a program, making it more difficult and expensive to maintain.

 9

1.2 An example: Printing a multiplication table3

 A multiplication table is to be generated and printed. The required output is:

 1
 2 4
 3 6 9
 4 8 12 16

 10 20 30 40 50 60 70 80 90 100

 The table is to be printed on a line printer using only the basic statements for
writing lines of text.

 Here is a badly designed program to solve the problem:

program mult_table (input, output);
 var
 row_no, col_no, k: integer;
 line: array[1..10] of integer;
 procedure displayline;
 const
 blanks = ' ';
 var
 col_no: integer;
 begin
 write(' ');
 for col_no := 1 to row_no do
 if line[col_no] = 0 then
 write(blanks)
 else
 write(line[col_no] : 4);
 writeln
 end; {displayline}
 procedure computeline;
 procedure computelement;
 begin
 col_no := col_no + 1;
 line[col_no] := row_no * col_no
 end; {computelement}
 begin
 displayline;
 row_no := row_no + 1;
 col_no := 0;

3This example is adapted from Jackson, M. A. [1], pp. 2-7.

 10

 while row_no <> col_no do
 computelement
 end; {computeline}
begin
 writeln;
 row_no := 1;
 line[1] := 1;
 for k := 2 to 10 do
 computeline;
 displayline
end.

 The program design is based on a flow-chart. It works correctly, producing the
required output. The coding itself conforms to the tenets of structured programming:
while statements control iteration, and there are no go to statements. But the structure is
hideously wrong.

 Consider what would be required to revise the program to produce any of the
following outputs:

(i) print the upper-right triangular half of the table instead of the lower-left triangular
half; that is, print:

 1 2 3 4 5 6 7 8 9 10
 4 6 8 10 12 14 16 18 20
 9 12 15 18 21 24 27 30

 81 90
 100

(ii) print the lower-left triangular half of the table, but upside down; that is, with the
multiples of 10 on the first line and 1 on the last line;

(iii) print the right-hand continuation of the complete table; that is, print:

 11 12 13 14 15 16 17 18 19 20
 22 24 26

 110 120 130 140 150 160 170 180 190 200

 Each of these changes should be easy to make. The first change affects only the
choice of which numbers are printed within each line; instead of printing line[1] up
through line[row_no], we wish to print line[row_no] through line[10]. We should be able
to make local changes to the program--perhaps in the third and fourth lines of
computeline--but we cannot. Instead, we essentially need to rewrite the entire program!
We are similarly defeated by the second and third changes.

 11

 The essence of the difficulty is this: we are given simple and local changes to
output specifications: in the first case, to alter the choice of numbers on the line; in the
second case, to later the order of printing the lines; in the last case, to alter the choice and
values of numbers to be printed in each line. We therefore look to make corresponding
local changes to the program. But where is the program component that determines the
choice of numbers to be printed? Where is the component that determines the order of
the lines? Where is the component that determines the values of the numbers? The
answers are not so simple as we had hoped.

 Superficially, computeline appears to process each line. In fact, however,
computeline prints line[row_no] and generates line[row_no+1]. So, computeline is
executed 9 times, and the 10th line is printed in the main program. In short, the program
does not model the structure of the problem.

The program should have been as follows:

 12

program mult_table (input, output);
 var
 row: integer;
 line: array[1..10] of integer;
 procedure clearline;
 var
 col_no: integer;
 begin
 for col_no := 1 to 10 do
 line[col_no] := 0;
 end; {clearline}
 procedure displayline;
 const
 blanks = ' ';
 var
 col_no: integer;
 begin
 write(' ');
 for col_no := 1 to 10 do
 if line[col_no] = 0 then
 write(blanks)
 else
 write(line[col_no] : 4);
 writeln
 end; {displayline}
 procedure computeline; {compute a line}
 var
 col_no integer;
 procedure computelement;
 begin
 line[col_no] := row_no * col_no;
 end; {computelement}
 begin
 for col_no:= 1 to row_no do
 computelement;
 end; {computeline}
begin
 for row_no:= 1 to 10 do
 begin
 clearline;
 computeline;
 displayline
 end;
end.

 13

 The program processes the whole table; the procedure computeline processes
each line; the procedure computelement processes each number; the table consists of 10
lines and computeline is executed 10 times. Each line consists of row_no numbers, and
computeline executes computelement row_no times. There is a perfect correspondence
between program structure and problem structure.

 We can produce (i) - (iii) by the simple and local program changes shown below:

(i) in computeline: for col_no := row_no to 10 do
(ii) in computeline: for col_no := 10 downto (11-row_no) do
 in computelement: line[col_no] := (11-row_no)*col_no
(iii) in computeline: for col_no := (10+col_no) to 20 do
 in computelement: line[col_no] := row_no*(10+col_no)

 The program was designed using a structure diagram.

1.3 Structure Diagrams, Program Structure and Data Structure

 Clearly, the example of the multiplication table problem shows that a badly
designed program can be costly and difficult to maintain. A compelling reason for
constructing well-designed programs is to minimize maintenance costs. The key is to
produce programs whose structure corresponds to the problem it solves.

 One lesson to be learned is that one should not use flow-charts as a design tool:
design is about structure, and flow-charts, as the name suggests, is about flow-of-control.
When using flow charts as a design tool, the programmer, instead of thinking about the
structure of the program, will think about its execution in the computer.

 A more positive lesson is that program structures should be based on data
structures. There are deep reasons why this is so, and they are depicted in the following
section.

Exercises:
(a) Make modifications to the badly-designed program to produce each of the outputs
given.
(b) Make modifications to the well-designed program to produce each of the outputs
given.

 14

2 Jackson Structure Diagrams

2.1 Jackson Structure Diagrams

 Design is about structure, about the relation of parts to the whole. Programs
consist of the following parts or components:

 (i) elementary components

 Elementary components have no parts. Examples are elementary statements in a
programming language or primitive operations of a machine.

 Sometimes, using bottom-up design, we will extend a programming language
with new operations. For example, if we need to manipulate matrices, we can define an
abstract data type, matrix, together with arithmetic operations. We could then multiply
two matrices, for example, with a statement such as matmult(a, b), where a is an m by n
array and b is an n by p array.

 (ii) composite components

 There are three types of composite components--components having one or more
parts:

 (a) sequence

 A sequence is a composite component that has two or more parts occurring once
each, in order. In the Jackson structure diagram shown on the left below, A is a sequence
consisting of parts B and C. B occurs once, followed by C. To the right of the structure
diagram is a textual representation, known as Jackson structure text, of the structure
diagram. Pseudocode representation of the structure diagram is shown at the far right.

B

 A

C

A seq

 do B;
 do C;
A end

Jackson structure
diagram

Jackson structure
text

Pseudocode

 begin

 end
 do B;
 do C;

(b) selection

 A selection is a composite component that consists of two or more parts, only one
of which is selected, once. In the structure diagram below, A is a selection consisting of

 15

parts B and C. Either B or C is selected, not both. Jackson structure text and pseudocode
representations of the structure diagram are shown to the right.

B C

 A

00

A sel

 do B;

A alt

 do C;

A end

if <cond-1>

endif

then
 do B;

 do C;

Jackson structure
diagram

Jackson structure
text

Pseudocode

<cond-1>

<cond-2> else if <cond-2> then

 In the structure text, the condition for selecting component B or C is written
explicitly to the right of the selection header. Note that the condition must be evaluated
before we can determine which component we have.

 Whereas in most programming languages, condition-1 would be evaluated before
condition-2 in the example above, no such ordering is implied by the structure diagram.
Consequently, condition-2 cannot in the structure diagram be expressed under the
assumption that condition-1 has been evaluated and is not true; rather, condition-2 must
explicitly express the condition for which component B is selected without reference to
the condition governing the selection of component A.

 Note also that the normal interpretation of the if then...else if...then...endif
statement allows for a null action if neither condition is met. However, the structure
diagram indicates that either B or C must be selected. To allow for the case when neither
of the conditions for B or C is met, we would draw the structure diagram shown below:

A

B C
° ° °

D

The condition for D would be not (cond-1 or cond-2). To express null action, the
component D would do nothing.

 From this example, we see that structure diagrams are a general design tool that
can and should be explicit in depicting the structure of program components.

 16

 Sometimes we have a situation in which data occurs or doesn't, depending on
some condition. This form of degenerate selection is depicted by the following structure
diagram and text representation:

Jackson structure
diagram

Jackson structure
text

Pseudocode

A sel <cond>

 do B;

end

if <cond>

° °
B

A

_

A

then

 do B;

endif

The structure diagram can be abbreviated as shown below:

°
 B

A

(iv) iteration

 An iteration is a composite component that consists of one part that repeats zero or
more times. In the diagram below, A is an iteration containing a part B which repeats 0
or more times. The Jackson structure text and pseudocode representations of the
structure diagram are shown to the right of the structure diagram..

 A

 B
*

while <cond>

endwhile
do B;

A iter

 do B;

A end

Jackson structure
diagram

Jackson structure
text

Pseudocode

<cond>

The while...endwhile construct rather than the repeat...until form of indefinite iteration
will always be used for two reasons. First, this form, with the condition test at the

 17

beginning, is the most general, including the case of an iteration with a part that iterates
zero times. The repeat...until form has no condition on entry, and its component part is
always executed once. The condition for subsequent repetitions indicates that there is
something different between the context of the first and subsequent occurrences.

 Sometimes, if an iteration must have at least one occurrence of the iterated part,
we will show this explicitly as shown below:

A

B1 A-body

B
*

Usually, the first occurrence has a different context--as when the first occurrence requires
special processing--and it is thus proper to depict the iteration in this explicit form.

 Consider the structure diagram below, depicting a file that contains three record
types, T1, T2 or T3, containing the values 1, 2, or 3 respectively in the field, rectype.4

FILE

T1 FILEBODY T3

T2
*

Jackson structure
diagram

Jackson structure
text

PFILE seq

 do T1;

iterPBODY

 do T2;

PBODY end

do T3;

PFILE end

 The structure text corresponding to the structure diagram is shown to its right.

 The question that arises is, 'What is the correct condition to write for the iteration,
PBODY?" It seems simple to write, "until T3", but this would be a mistake. PBODY

4 adapted from Jackson, 1975, p. 26

 18

iterates a component, T2, so the explicit condition for the iteration is "while T2", e.g.
"while rectype = 2. If we use the condition "until T3", we are relying on a property of
the specification of FILE not FILEBODY. If the specification of FILE changed, so that a
T4 record is interspersed between FILEBODY and T3, we would have to modify the
condition controlling the iteration of PBODY, even though the specification of the
component FILEBODY has not changed. An accumulation of small changes of this kind
can have a large effect on the cost of program maintenance. The guiding principle is to
code explicitly the conditions that specify the processing of each program component.

 Generally, we will be explicit in depicting composite structures. If a sequence is
part of a component that is not the root of the structure, however, we will relax the
explicit begin....end demarcation for sequence, as is shown in the following example:

Jackson structure
diagram

Jackson structure
text

Pseudocode

A

B C

D E

° °

A sel

 do B;

A alt

 do D;
 do E;
A end

if <cond-1>

endif

then

 do B;

 do D;
 do E;

<cond-1>

<cond-2> else if <cond-2> then

The sequence C, consisting of components D and E, is not explicitly demarcated in the
structure text or pseudocode.

2.2 Examples

(i) A simple book consists of pages; a page consists of lines of text; a line consists of
words.

 Here is a first attempt at a structure diagram:

 19

Simple book

......... Page 1 Page 2

..... Line 1 Line 2 Line N

......Word
 2

Word
 N

Word
 1

 Page N

 Line 1 Line 2 .. Line N

... Word
 N

Word
 1

Word
 2

 We can simplify this effort replacing each sequence by an iteration:

Simple book
(Pages)

Page
(Lines)

*

Line
(Words)

*

Word
*

 We see from this example that iteration is a generalization of sequence. Note that
a simple book consists of pages; a simple book (pages) is an iteration--the part that
iterates is a single page. Similarly, a page is equivalent to lines; a page (lines) is an
iteration--the part that iterates is a single line. And so on with line (words).

(ii) A book consists of a front and back cover with pages in between. Each page consists
of lines of text; each line consists of words. At the bottom of each page is a page
number.

 A first effort to draw the structure diagram for a book as described above might
yield something like the following:

 20

Page number

Front cover Back cover

Book

Page
*

Line
*

Word
*

 This structure diagram is incorrect, first of all, formally, that is grammatically:
For, we may ask, what kind of component is a book? It appears that a book is an
iteration, since there is a part, page, that iterates. On the other hand, book appears to be a
sequence, since there are three consecutive parts--front cover, page, and back cover But
this is an impossible situation--a composite component must either be a sequence, a
selection or an iteration--it cannot be a hybrid combination. While a sequence does have
three parts, none of them repeats--each occurs exactly once; While an iteration has a part
that repeats, it has one and only one part.

 A similar, formal error in the diagram occurs in the part that shows a line as
having two parts, one of which iterates. So, what kind of component is a line? It cannot
be an iteration, since it has two parts; it cannot be a sequence, since one part iterates. It is
an impossible construct that violates the grammar of structure diagram construction.

 A third error is in the placement of page number. From the diagram, a page
number appears after all of the words in each line rather than after all lines have
occurred.

 The correct structure diagram for a book is as shown below:

 21

Page number

Front cover Back cover

Book

Book body

Page
*

Line
*

Word *

Page body

 In the structure diagram, note that we have created a name for an iteration that is
part of a sequence: "Book body" is the part of a sequence that comes after the front cover
but before the back cover; "book cover" is an iteration of page. Likewise, "page body" is
the part of a page that comes before the page number.

 In general, we have to create a name for any composite component that is part of
another component to satisfy the formal rules of structure diagram construction..

(iii) An inventory transaction for a warehouse

 Three types of transaction are defined: a receipt of inventory, indicated by a code
of "R"; a withdrawal of inventory, indicated by a code of "W"; and a transfer of
inventory, indicated by a code of "T". In the case of a receipt, the data included on the
transaction is date of receipt, department code, item number, and quantity received; in the
case of a withdrawal, the data included is date, department code, item number, and
quantity withdrawn; for a transfer, the data included is transaction date, department code
issuing the inventory, item number and quantity issued, and department code to which the
inventory is being transferred.

 The data structure for the inventory transaction described above is shown in the
Jackson structure diagram below:

 22

inventory
transaction

receipt withdrawal transfer° ° °

 The data structures for each transaction type are shown below:

receipt

'R' date dept code item # quantity

 withdrawal

'W' date dept code item # quantity

 transfer

'T' date dept code item # quantity
 recipient
 dept code

 Suppose we wish to process inventory transactions. The gross structure of the
program component to process a transaction is evidently:

 23

° °

process
inventory

 transaction

process
receipt

process
withdrawal

process
transfer

°

 Note that the structure of the program component to process a customer
transaction is identical to its data structure. We simply use a verb in each node of the
diagram to express the action to process the data.

(iv) Student registration in courses

 Students in a university add or drop courses. The student provides a code, 'A' for
add or 'D' for DROP; his or her identification code; and the course code. We are required
to produce an enrollment activity log for each student. The structure of a student's
actions is shown below in the data model at left.

*

ADD DROP
° °

ACTION

Data Structure

PRODUCE
STUDENT

ENROLLMENT
REPORT

*

PRODUCE
DROP LINE

°

PRODUCE
REPORT LINE

Program structure

 PRODUCE
 ADD LINE

°

STUDENT

If we consider a program to display a student's enrollment activity, the program structure
is evidently that shown to the right of the data model structure diagram. Note the
correspondence between the program structure and the data structure. For a student, the
program produces a report; for each student action, the program has a component to write
a report line for that action; for an add action, the program has a component to produce
an add line, while for a drop action, there is a component to produce a drop line.

 24

2.3 Program structure based on data structure

 More fundamentally, examples (iii) and (iv) in the previous section illustrate the
basis of Jackson methodology: We model a problem first, using a data structure (model)
to capture the problem structure. The program structure is derived from the data model.
Thus, program structure reflects problem structure. The situation is shown in the
diagram below:5

Program

 Program
Structure

 Reading and
Writing

Executable
Operations

Data
Structures

Task to be
Performed

Problem
Environment

Program structure based on data st ructure.

 The problem environment is that part of the real world that a computer system
models. In the case of student registration, the real world consists of students who add or
drop courses. Of course, there are constraints on a student's behavior: he cannot add a
course that doesn't exist; he can't drop a course he hasn't previously added; he can't add a
course he is already enrolled in.

 The computer system sees the world through the data structures that model a
student's possible actions. A serial stream of a student's actions over time--a student file-

5 Jackson, 1975, p. 10

 25

-contains a code of 'A' or 'D', the student's identification number, and the course
identification number occur in each record. The file is a model of the student's actions.
Each record models an action of the student.

 The program consists of a series of operations to be executed by the computer.
Some of these are associated with moving around the data structures: we must read the
next action record for a student and write the next report line. Other actions are more
directly associated with the tasks to be performed. For example, we may need to keep
track of how many actions a student made. Each time a student adds or drops a course,
there must be an operation "count := count + 1"; and the variable count must be properly
initialized at the start and printed out at the end.

 For both types of operation, we can associate the operation with a component of
the data structures on which the program is based.

 JSP is based on these design ideas. We begin by modeling the problem and
expressing the model in the form of one or more data structures. From the data
structures, we form a program structure. We consider the tasks to be performed, and list
the operations needed. Then we allocate the operations to the appropriate component of
the program structure.

2.4 Elementary versus generalized components

 The machine we use provides us with a set of elementary data types and a set of
elementary operations. In examining a problem, we may decide that we need data types
and operations at a more abstract level in order to solve the problem. In effect, using
bottom-up design, we modify our initial machine, M' and create a new machine, M'' that
has new elementary data types and operations. For example, suppose we are
programming in PASCAL. Our programming environment has already modified our
hardware to create what we may call a PASCAL-machine. When we operate on a
Boolean data type, we are not concerned with its machine representation, nor with the
machine instructions to execute an assignment statement such as

 b := true;

where b is a Boolean variable. Now, suppose we wish to add a matrix data type, together
with operations for doing matrix arithmetic. We may extend our programming language
to include a data type, matrix, together with operations matadd, matsub, matmult and
matdiv, together with matrix constants, matzero and matident to represent the zero and
identity matrices. In effect, we have extended our elementary operations by bottom-up
design.

 On the other hand, when we design a program with JSP, constructing the program
structure from a data model of the problem, we build a tree structure such as the
following:

 26

P

P1 P2 P3

P11 P12 P31 P32

 In a tree structure, each component depends on one and only one component
higher up in the hierarchy.
Here again there are no generalized components. A change to P2 will have no effect on
any other component because each component has structural integrity.

 In top-down design, the attention span of the designer is limited to a less complex
problem than the original one. Thus, problem P is dissected into subproblems P1, P2 and
P3 and each of these is similarly dissected, resulting as before in a tree structure such as
that given above. We will see later that JSP is not a top-down method, but rather a
constructive method of design. But like top-down design, JSP creates a program
structure in which each component preserves structural integrity.

 Contrast this with the following picture that uses generalized components:

P

P1 P2 P3

PA PB PC

 We may wonder how the design process was accomplished. PC depends only on
P2, but PA depends on both P1 and P, while PB depends on P1, P2 and P3. What part of
component PB will need to be changed if component P1 is changed? Will this change
affect the way PB works as a component of P3?

 27

 Clearly, the design process was not top-down. In some sense we have optimized
since this design has only seven components, whereas our original had eight. Our
components are generalized. We may have saved valuable storage space. But in the
process, we have lost design integrity, and increased the burden of future maintenance.

 There are two lessons here: First, we can design new, more general elementary
operations using bottom-up design to transform our programming environment. Second,
created generalized components is an optimization technique; as will be discussed later,
optimization should only be attempted after a correct design has been derived.

Exercises

(i) Compose a single structure diagram that depicts the warehouse inventory transaction
and each transaction type described in section 2.2 above.

(ii) (a) Write a Pascal record structure for the warehouse transaction described in section
2.2 above
 (b) Write a Pascal block of code to process a warehouse transaction described in
section 2.2 above.

(iii) Draw a structure diagram for each of the following Pascal declarations:
(a) var a : array[1..10] of integer;
(b) var b : array[1..10] of array[1..20] of real;
(c) var c : array[1..10] of array[1..20] of packed array[1..30] of char;

(iv) Draw a structure diagram for the file, employees, declared below:

 const
 maxraises = 50;
 maxchildren = 25;
 type

alpha = packed array[1..20] of char;
 date = record
 month : (jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec);
 day : 1..31;
 year : integer
 end;
 sex = (male, female);
 var
 employees : file of record
 lastname, firstname : alpha;
 ssn : integer;
 birthdate : date;
 maritalstatus : (single, married, divorced, widowed);

 28

 numberofraises : 1..maxraises;
 salaryhistory : array[1..maxraises] of record
 begindate : date;
 salary : integer;
 jobtitle : alpha;
 end;
 numberofchildren : 1..maxchildren;
 child : array[1..maxchildren] of record
 birthdate : date;
 firstname : alpha;
 end;
 case s : sex of
 male : ();
 female : (maidenname : alpha);
 end;

(v) For each of the following regular expressions below, interpret the regular expression
as a data structure and draw a structure diagram.

(a) ((a*|b*)*c)|d (b) (a*)*|b|cd)
(c) ((a|b|cd)*)* (d) a|(b(cd)*)
(e) ab(c|d*)* (f) a*b*(c|d)*
(g) ((ab)*)*|cd (h) (a|bc|d*)*
(i) (a*b|cd*)* (j) ((a*)*(b|c)*)d
(k) (a|b)*c(d*)* (l) a(b|(cd*))*
(m) ab(c|d*)* (n) a*|(b*c*)|d
(o) (a*|b|c*)*d

Example: (ab|c)*

 A

 B
*

C
° °

c

 a b

 29

(vi) For each of the regular expressions in (v), interpret the regular expression as a
program. Draw the corresponding structure diagram. and give the equivalent Jackson
structure text and pseudocode.
 Example: (ab|c)*

 A

 B
*

C
° °

 do c

 do a do b

Jackson structure text Pseud ocode:

 A iter dowhile <cond1>
 B select if <cond2>
 C seq begin

 C end end
 B alt else

 B end endif
 A end endwhile

Structure Diagram

do a;
do b;

do a;
do b;

do c; do c;

(vii) For each of the regular expressions in (vi), write specifications for a program
whose structure corresponds to the regular expression.
 Example: (ab|c)*
"For lunch you may have either soup and crackers or a salad. You may have as many
servings of either as you wish."

 30

3. JSP: Basic Design Method and the Single Read-ahead rule

 3.1 Basic Design Method

 The basic design method in JSP consists of the following steps:

1 Draw a system diagram
2 Draw a data structure for each input and output file
3 Draw a single data structure based on correspondences between the input and output
data structures; this data structure forms the basic program structure
4 List the operations needed by the program, For each, ask "Where does it belong (in
what program part?)" "How many times does it occur?" Allocate the operations to the
basic program structure.
5 Translate the program structure into text, specifying the conditions for iteration and
selection.

 To illustrate the basic design technique, let's begin with a simple example--the
multiplication table that we considered earlier. A multiplication table is to be generated
and printed. The required output is:

 1
 2 4
 3 6 9
 4 8 12 16

 10 20 30 40 50 60 70 80 90 100

The steps of the basic JSP design method for this example are:

1 Draw system diagram.

 In a system diagram we record what the inputs to and outputs from the program
are. In our example, we have no input. The system diagram shows the program to
generate multiplication table producing the printed table as output:

Generate
multiplication

 table
Printed

table

In simple problems such as this one, we can omit showing this step explicitly, since the
system diagram is more or less self-evident.

2 Draw data structures

 31

 We record our understanding of the problem environment by modeling it with
suitable data structures. Our understanding of the multiplication table is expressed in the
data structure diagram below:

Line

Table

Element
*

*

3 Form program structure based on the data structures from the previous step.

 We have just one data structure. The program structure is therefore:

Produce
Table

Produce
Line

Produce
Element

*

*

4 List and allocate operations

 We note hat a line may contain either a number or a blank in any position.
Representing a line by an array of integers, we will represent a blank by the integer value
zero. Using bottom-up design, we define the procedures clearline and displayline.

 We list the elementary operations needed to perform the task, and answer for each
operation, "How often is it executed?" and "In what program component(s) does it
belong?" The operations must be elementary statements of some programming language;
we have chosen Pascal.

operation how often? where?
1 row-no := 1; once at start of program
2 col-no := 1; once per line in part that produces a line, at start
3 row-no := row-no + 1; 9 times in part that produces a line
4 col-no := col-no + 1; (row-no)-1 per line in part that computes an element

 32

5 line[col_no] := row_no*col_no once per element in part that computes an element

Having listed the operations, we next allocate them to our basic program structure to
obtain an elaborated program structure. In order to accommodate the allocation of
operations to components, we will almost always have to add new components, as we see
in the structure diagram below, where we have added the components, "Produce Table
Body" to allow for initializing row-no to 1, "Produce Line Body" to accommodate the
operations before and after producing the elements in a line, and "produce-Element" to
allow for incrementing the column prior to computing the next element.:

Produce
Table

Compute
Element

 Produce
Line

Produce
Line Body

*

 1

Produce
Table Body

Clear Line Display Line

2

4

3

*

5

(5) Code program from structure diagram or structure text.

 The structure text corresponding to the structure diagram above is given below:

Produce-Table seq
 row-no := 1;
 Produce-Line iter <while row-no <> 10>
 clearline;
 Produce-Line-Body
 col-no := 1;
 Produce-Element iter <while col-no <> row-no>
 line[row_no] := col-no * row-no;
 col-no := col-no + 1;
 Produce-Element end
 Produce-Line-Body

 33

 displayline; {print a line}
 Produce-Line end
 row-no := row-no + 1;
Produce-Table end

Note that we do not need to make explicit sequences within other components--thus,
there is no structure text corresponding to the sequences "Produce Line ", "Produce-Line-
Body" and Produce-Element"

 The program text, which appears at the end of section 1.2, is easily coded from
either the structure text or structure diagram.

3.2 Single Read-ahead Rule

 Our multiplication table example involved no reading, only writing the lines of
our table. The same output is produced each time. Most interesting programs are based
on reading data from a serial file whose contents vary from one execution of the program
to the next, so that different output is generated. We will see, moreover, that many
awkward problems yield to treatment as problems in serial file processing, although at
first glance they appear to be nothing of the kind.

 Suppose we have a file, F, consisting of two records, T1 and T2. It can be
processed by a program with the structure below6:

6 Adapted from Jackson [1], pp. 52-54.

 34

P seq
 P1 seq
 read;
 processT1;
 P1 end
 P2 seq
 read;
 processT2;
 P2 end
P end

 Here we have allocated the read operations at the start of each component that
processes a record.

 Suppose our file specification changes so that we may or may not have a T1
record at the start of the file, but will always have a T2 record. The data structure is thus:

File

Possible
T1

T2

T1
°

 Since only the specification for the part that processes a T1 record has been
changed, one would suppose we could modify our program by changing only the P1
component. But this is easier said than done. Clearly, we cannot put the first read
command in the component that processes a T1 record, because the condition test for the
presence of a T1 record occurs at the start of the selection and depends on the T1 record
already having been read. Thus, the first read must occur before component T1. The
same would be true if we had an iteration, since the condition test comes at the start of
the iteration. So, we will put the initial read prior to any component that uses the record.
The record will then be available for any component that may need it. Putting the initial
read at the beginning and leaving the second read operation at the start of the P2
component, we obtain the program structure below:

 35

P seq
 read; {1st record is available to component P1}
 P1 seq
 POSST1 sel <T1 present>
 processT1;
 POSST1 or <T1 absent>
 ; {null action}
 POSST1 end
 P1 end
 P2 seq
 read T2;
 processT2;
 P2 end
P end

 Our initial read is prior to the condition test for T1. If the T1 is absent, the T2
record is already present--the read in component P2 is not needed and will read beyond
the T2 record. We only wish to read a second time if we have a T1 record. So, we are
led to position the second read immediately after the processing of T1 as shown below:

P seq
 read; {initial read}
 P1 seq
 POSST1 sel <T1 present>
 processT1;
 read; {read-ahead}
 POSST1 or <T1 absent>
 ; {null action}
 POSST1 end
 P1 end
 P2 seq
 processT2;
 P2 end
P end

 We can generalize our strategy above with following rule:

Single Read-ahead rule: Place the initial read immediately after opening a file, prior to
any component that uses a record; place subsequent reads in the component that
processes a record, immediately after the record has been processed.

 The effect of the read-ahead rule is to have the next record (if any) available at the
start of any component that may process it. We will see later that we sometimes need to
have more than one record available at the start of a component; in this case we will
need a multiple read-ahead rule.

 36

3.2.1 Pascal file processing: non-text files

 Let us consider the following problem: A file of integers begins with a sequence
of nonnegative integers whose sum we are asked to compute.

 We might model our input file with the structure:

File
of

integers

Nonnegative

 integer

Other

 integer

Integer
*

° °

But, this structure doesn't tell us what the problem states, namely, that the file all of the
nonnegative integers come before any positive integer. The structure we have shown
only shows that any integer may be nonnegative or negative. Clearly, the correct
structure of the input file is:

File
of

integers

Nonnegative

 integers

Other

 integers

Nonnegative
integer

*
Other
integer

*

The structure text corresponding to this appears to be the following:

computeSum seq
 reset(f); {f^ accesses the first integer, if any}
 sum := 0;
 Compute-nonnegative iter <while not eof(f) and (f^>= 0)>
 sum := sum + f^; {process the current integer}

 37

 get(f); {read-ahead}
 Compute-nonnegative end
 Other-integers iter <while not eof(f)>
 ;
 Other-integers end
 print "Sum= ", n;
 close(f);
computeSum end

We can delete the block "Other-integers" since we can ignore the rest of the file once a
negative integer has been read.

 Unfortunately, the compound condition

not eof(f) and (f^>= 0)

presents a difficulty because, when eof(f) is true, f^ becomes undefined, and the relation

(f^>=0)

cannot be evaluated. In effect, we need to test first for the existence of a file component
and, then, only if it exists, test its value. To express the semantics exactly, we need to
express the condition with an expression like:

not eof(f) and (if not eof(f) then (f^>= 0)

but Pascal does not have the expressive power to do so. In order to avoid this difficulty,
let's use a variable, n, instead of the buffer variable. We would normally initialize n
explicitly at the beginning of the program, but we will assume that our Pascal compiler
initializes all integer variables for us. Our structure text then becomes:

computeSum seq
 reset(f); {f^ accesses the first integer, if any}
 sum := 0;
 Compute-nonnegative iter <while not eof(f) and (n >= 0)>
 sum := sum + f^; {process the current integer}
 get(f); {read-ahead}
 Compute-nonnegative end
 print "Sum= ", n;
 close(f);
computeSum end

We realize, however, that we have not assigned the first integer value to n . We must
assign f^ to n, assuming f^ is defined. Similarly, we note that we must assign the new
value of f^, if it exists, to n after the get(f) operation. Incorporating these two changes,
we are thus led to the structure text below:

 38

computeSum seq
 reset(f); {f^ accesses the first integer, if any}
 sum := 0;
 assign-n sel not eof(f)
 n := f^;
 assign-n end
 Compute-nonnegative iter <while not eof(f) and (n >= 0)>
 sum := sum + f^; {process the current integer}
 get(f); {read-ahead}
 assign-n sel not eof(f)
 n := f^;
 assign-n end
 Compute-nonnegative end
 print "Sum= ", n;
 close(f);
computeSum end

 The Pascal program corresponding to the structure text given above is shown
below:

program computeSum (input, output);
 const
 fname = 'data place 52:Development:JSP.pas:fileOfIntegers';
 var
 f: file of integer;
 sum, n: integer;

begin
 reset(f, fname); {first file component, if any, is accessible via f^}
 sum := 0;
 if not eof(f) then
 n := f^; {first file component, if any, assigned to n}
 while not eof(f) and (n >= 0) do
 begin
 sum := sum + f^; {process current file component}
 get(f); {advance file pointer to next file component}
 if not eof(f) then
 n := f^; {assign next file component, if any, to n}
 end;
 writeln(' sum = ', sum);
end.

 Looking at the structure text, we note that the single read-ahead rule is followed:
the reset(f) instruction opens the file; assignment of the buffer file variable, f^ to n

 39

constitutes the initial read; the get(f) together with the assignment of f^ to n constitute
the read-ahead, and immediately follows the processing of the current file component.

 We would prefer to use a higher-level form of input, replacing get(f) and the
assignment of f^ to a variable with a procedure that combines the operations of advancing
to the next file component and assigning it to a variable into a single command.

 We may be used to the schema for Pascal file processing in which the read
command is placed within the iteration, as in the program below which computes the sum
of a file of integers:

program computeSum (input, output);
 const
 fname = 'data place 52:Development:JSP.pas:fileOfIntegers';
 var
 f: file of integer;
 sum, n: integer;

 begin
 reset(f, fname);
 sum := 0;
 while not eof(f) do
 begin
 read(f, n);
 sum := sum + n
 end;
 writeln(' sum = ', sum)
end.

 In our problem to compute the sum of an iteration of nonnegative integers, we
need an iteration with a compound condition:

begin
 reset(f, fname);
 sum := 0;
 while not eof(f) and (n >= 0)) do
 begin
 sum := sum + n;
 end

 Where do we place the read statements? We cannot place the read statement
within the iteration, because we need to know the value of n at its outset. We try the
following:

begin
 reset(f, fname);

 40

 read(f, n);
 sum := 0;
 while not eof(f) and (n >= 0)) do
 begin
 sum := sum + n;
 read(f, n)
 end

But we cannot place the read prior to the iteration, since if the file were empty, we would
attempt to read past the end-of-file marker. Even if the file were not empty, the code
above is incorrect since:
 (i) If the file contains just one integer, it will never be processed. The initial read
will assign it to n, but advance to the next file component, and cause eof(f) to be true at
the start of the iteration;
 (ii) The last file component will not be processed for the same reason. The read-
ahead assigns the last value of f^ to n, and then advances the file buffer variable, setting
eof(f) true before the last value has been processed.

 Recall that the standard Pascal procedure, read(f, n), is equivalent to

n:= f^;
get(f);

We note that in our structure text for the problem to compute the sum of nonnegative
integers, the order of operations was reversed: first we advanced the file buffer variable
with get(f); then we assigned f^ to n, if it existed. However, we cannot place a get(f) at
the start of our program, since reset(f) is obligatory and achieves the same result. So, in a
higher-level read operation using both operations, we must assign f^ and then advance
the file buffer variable. If we record the status of end-of-file before the file buffer
variable is advanced, then we can be assured of processing the current value assigned to
n, and avoid the difficulties noted in the schema using the standard Pascal read
procedure. We redefine the read procedure below:

 type
 intfile = file of integer;
 var eofbit: boolean;
 ...
 procedure xread(var f: intfile; var n: integer);
 begin
 eofbit := eof(f);
 if not eofbit then
 begin
 n := f^;
 get(f)
 end
 end

 41

The global Boolean variable, eofbit, reflects the status of the file after the current file
buffer component has been assigned to n, e.g. "read", but before the file buffer variable
has been advanced. Eofbit is used for any subsequent end-of-file testing instead of eof(f).
The structure text incorporating the redefined read follows the single read ahead rule:

computeSum seq
 reset(f);
 xread(f, n); {initial read}
 sum := 0;
 Compute-nonnegative iter <while not eofbit and (n >= 0)>
 sum := sum + n;
 xread(f, n); {read ahead}
 Compute-nonnegative end
 print "Sum= ", n;
 close(f);
computeSum end

Note that:
 (i) We can have an initial read prior to the iteration since read will not advance
beyond the end-of-file marker;
 (ii) If there is but one component in the file, eofbit is false following the initial
read, and the current value of the component will be processed within the iteration; the
invocation of xread following processing will assign true to eofbit;
 (iii) Immediately after the last record is read, eofbit is false but eof(f) is true.
Thus, the last record will be processed.

 The Pascal program corresponding to the structure text is shown below:

program computeSum (input, output);
 const
 fname = 'data place 52:Development:JSP.pas:fileOfIntegers';
 type
 intfile = file of integer;
 var
 f: intfile;
 eofbit: boolean;
 sum, n: integer;

 procedure xread(var f: intfile; var n: integer);
 begin
 eofbit := eof(f)
 if not eof(f) then
 begin
 n := f^;
 get(f)

 42

 end;
 end

begin
 reset(f, fname);
 xread(f, n);
 sum := 0;
 while not eofbit and (n >= 0) do
 begin
 sum := sum + n;
 xread(f, n);
 end;
 writeln(' sum = ', sum)
end.

 Replacing the standard Pascal read procedure allows us to apply the single read-
ahead rule, derived from the basic logic of condition testing prior to selection or iteration
components, as a general solution for file processing. The details of the xread procedure,
the result of bottom-up design, are properly hidden from the program--they are outside of
the boundary of the model on which the program is based.

 There are many cases where the standard Pascal schema--placing the reset
procedure at the start of a program but placing the standard read procedure after the eof
test as the first statement of the iterated component--works fine. But it fails in cases
where there is a condition at the head of the iteration that depends on the current record's
contents. Throughout this text, we will therefore enforce the single read-ahead rule.

 Note: In COBOL, we have no such difficulties. The single read-ahead rule can
be applied perfectly, as shown in the segment below for the problem to compute the sum
of an iteration of nonnegative integers:

WORKING-STORAGE SECTION.
...
 02 IN-EOF PIC X VALUE SPACE.
 88 IN-EOF VALUE 'E'.
...
PROCEDURE DIVISION.
PROCFILE.
 OPEN INFILE.
 READ INFILE AT END MOVE 'E' TO IN-EOF.
 MOVE ZERO TO SUM.
 PERFORM COMPUTE-SUM UNTIL ((IN-EOF) OR (N .GE. 0)).
 DISPLAY "SUM =", SUM.
 CLOSE INFILE.
 STOP RUN.
COMPUTE-SUM.

 43

 ADD N TO SUM GIVING SUM.
 READ INFILE AT END MOVE 'E' TO IN-EOF.

3.2.2 Pascal file processing: textfiles

 As another example, let us design a program to read a textfile consisting of some
text and output each word of the input file as a separate line of output. A word is defined
as any sequence of letters and apostrophes.

 We may be tempted to begin programming by using an existing program, known
to work correctly. This technique, used by many experienced programmers, is analogous
to the method of fixed point iteration: like the mathematical method, our first
approximation to the solution will be a guess, which we will subsequently successively
refine. We take as our first approximation the standard structure text below for copying
an input text file to an output file:

 reset(f); rewrite(g);

begin
 while not eof(f) do
 begin
 while not eoln(f) do
 begin
 read(f, ch);
 write(g, ch);
 end
 writeln(g); readln(f);
 end
 close(f);
 close(g)
end

 In the structure text, the read procedure refers to the standard Pascal read
procedure for textfiles.

 The input file consists of lines of text. Each line consists of words alternating
with punctuation. After some experimentation, we arrive at the following input file
structure:

 44

Word Punctuation
° °

Textfile

Word or
punctuation

Word
character

*

Punctuation
character

*

*

Line
*

 Within each line we have an iteration of word-characters or an iteration of
punctuation-characters. As our first modification, we try the following:

 reset(f); rewrite(g);

begin
 while not eof(f) do
 begin
 read(f, ch);
 if (ch in word-char) then
 while not eoln(f) and (ch in word-char) do
 begin (read & write a word}
 write(g, ch);
 read(f, ch)
 end
 ...
 ...
 else (skip past punctuation}
 ...
 ...
 end
 close(f);
 close(g)

 45

end

 We must place the initial read before the condition test for a word-character, and
we reverse the read and write within the iteration. This gives the familiar single read-
ahead pattern. But, of course, with the standard Pascal read procedure, a quick analysis
shows that this schema will not work:
 (1) If the input file consisted of the single word, "a", eoln will be true following
the initial read, and so we will not process our single character file;
 (2) The last character in the file won't be processed for similar reasons.

 Evidently, as we saw in the previous section, we want to test for end-of-line after
f^ is assigned to ch, but before advancing to the next file component. We could redefine
our read procedure accordingly, and proceed further in our analysis. This is left as an
exercise.

 Instead, we will start afresh using JSP. The design steps are shown below:

1 Draw a system diagram

Produce
Output File

Output
File Textfile

2 Draw a data structure for each input and output file

 After discussing the problem with its originator, we
satisfy ourselves that we need not concern ourselves with the line structure of the input--
there won't be any need to keep track of the number of words per line in the input file, for
example. Thus, we will model the problem without reference to the line structure of the
input textfile. Instead, we will do some bottom-up design and design a procedure to read
the next character from our input file. Since the specification requires one word per line
on the output file, we must model the output file explicitly as an iteration of lines.

 The structure of the input and output files are shown
below together with correspondences between input and output components:

 46

* *
Word Punctuation

° °

Textfile Output
File

Line
*

Word End-of-line
separator

Textfile of words
Output file
one word per line

Word or
punctuation

Word
character

*

Punctuation
character

*

*

 There is one output file for each input textfile; each
word on the output file corresponds to a word in the input file; preceding and following
each word, there may be one or more punctuation characters.

3 Draw a single data structure based on correspondences between the input and output
data structures; this data structure forms the basic program structure which is shown
below:

 47

Consume
a word;

 produce a line;

Write output
line

Consume
textfile;

 produce output

*

 Consume word;
 Produce line

C-character;
P-character

*

Consume
punctuation

Consume
punct character

*

° °

C-word
P-word

4 List the operations needed by the program, For each, ask "Where does it belong (in
what program part?)" "How many times does it occur?" Allocate the operations to the
basic program structure.

operation how often where?

1 reset(infile); once at start
2 rewrite(outfile); once at start
3 xread(infile,ch); n times, where n = immediately after reset; in
 # words in textfile component that consumes a word;
 in component that consumes
 punctuation characters
4 write(outfile, ch); once per word in part that outputs a character
5 writeln; once per word in part that outputs a line, after
 writing a word
6 close(textfile); once at end of program
7 close(outfile); once at end of program

The structure text corresponding to the program structure is shown below:

C-textfile seq
 reset(infile);
 xread(infile, ch);
 rewrite(g);

 48

 C-textfile-body iter <while not eof>
 C-word-or-punct sel <word-char>
 C-word-char iter <while not eof and in word-char>
 write(g, ch);
 xread(infile, ch);
 C-word-char end
 writeln(g);
 C-word-or-punct alt <while not eof and not in word-char>
 C-punct-char iter <while not eofbit and not in word-char>
 xread(infile, ch);
 C-punct end
 C-word-or-punct end
 C-textfile-body end
 close(infile);
 close(g);
C-textfile end

 Our structure text is intelligible: The component, C-word, consumes and outputs
a word. The operation, writeln(g), skips to the next line, immediately after a word has
been consumed and output. There is a component that skips past the punctuation
between words.

 In our structure text, the Pascal read procedure has been redefined using bottom-
up-design to test for end-of-file and end-of-line after ch has been assigned the value of f^,
if it exists, but before advancing to the next file component. The redefined procedure is
shown below:

procedure xread(var f: text; var ch: integer); {read a character from a text file}
 begin
 eofbit := eof(f);
 if not eofbit then
 begin
 eolnbit := eoln(f);
 if not eolnbit then
 begin
 ch := f^;
 get(f)
 end
 else
 begin
 ch := ' '; {if end-of-line, set ch to a blank indicating end
 {of word}
 readln(f); {and skip to beginning of next line}
 end;
 end;
 end;

 49

 In our xread procedure, in fact, we don't need to model the line structure of the
input text file. We could as well use the following procedure, akin to our procedure to
read from a non text file:

procedure xread(var f: text; var ch: integer); {read a character from a text file}
begin
 eofbit := eof(f);
 if not eofbit then
 begin
 ch := f^;
 get(f)
 end
end;

5 Translate the program structure into text, specifying the conditions for iteration and
selection. The Pascal program is shown below; the text of the xread procedure, is
omitted, and the program writes to the standard output file:

program TextfileofWords (input, output);
 const
 infilename = 'data place 52:Development:JSP.pas:TextfileofWords.txt';
 var
 f: text;
 ch: char;
 eofbit, eolnbit: boolean;

begin
 reset(f, infilename);
 xread(f,ch); {initial read-ahead}
 while not eofbit do
 begin
 if (ch in ['a'..'z', 'A'..'Z', '''']) then {word}
 begin
 while not eofbit and (ch in ['a'..'z', 'A'..'Z', '''']) do
 begin {consume and output a word}
 write(ch);
 xread(f, ch)
 end;
 writeln {skip to beginning of next line}
 end
 else
 while not eofbit and not (ch in ['a'..'z', 'A'..'Z', '''']) do
 xread(f, ch); {skip punctuation}

 50

 end;
 close(f);
end. {program}

 Note: In the programming language C, the handling
of text files is much simpler than in Pascal, and the single read-ahead rule can be applied
without difficulty, as shown in the program below to copy an input file to an output file
character-by-character:

#include <stdio.h>
/* copy input to output */
{
 int c;

 c = getchar(); /* initial read */
 while (c != EOF) {
 putchar(c);
 c = getchar(); /* read ahead */
 }
}

Ex. (iii) A file consists of a sequence of positive integers followed by a sequence of
negative integers. Compute the sum of both sequences. Write the program assuming (a)
input file of integers, and (b) input text file. How does the read procedure you define
differ in the two cases?

(iv) A file contains sets of data. Each set consists of a header record, followed by a
number of data records. Each header record contains an integer that tells how many data
records will follow. Each data record contains two real numbers. Write each set of
data as a separate output file with the name, FILEn, where n is a consecutively numbered
integer (1,2,3,...).

(v) A file consists of sets of data. Each set consists of a header record followed by a
number of data records, as in problem (i) above. Each data record contains three real
numbers, and the three sets of real numbers form three distinct data sets. Write each data
set to a separate output file, putting the 1st number from an input data record to the 1st
file, the 2nd number from an input data record to the 2nd file, and the 3rd number from
an input data record to the 3rd file. (Thus, each output file contains data records
consisting of just one real number.) Name each output file with the name, FILEmn,
where m = a consecutively numbered data set (1,2,3,...) and n is 0,1 or 2 depending on
whether a data record contains the 1st, 2nd or 3rd input real number on the input file.

(vi) Using the schema below to input a textfile using the standard read(f, ch)
procedure, try to rewrite the program to produce lines of output containing one word per

 51

line from an input file of text. Is the program intelligible? Is there a component that
reads and writes a word?

 reset(f); rewrite(g);

begin
 while not eof(f) do
 begin
 read(f, ch);
 if (ch in word-char) then
 while not eoln(f) and (ch in word-char) do
 begin (read & write a word}
 write(g, ch);
 read(f, ch)
 end
 ...
 else (skip past punctuation}
 ...
 ...
 end
 close(f);
 close(g)
end

(vii) In addition to outputting words from an input text file, one per output line, your
program should report a count of the number of words per line and the number of
characters per word. Using JSP, rewrite the program, modeling the line structure of both
input and output text files.

 52

4. Basic Design Method: Multiple Data Structures

 Let us continue to discuss the basic design method introduced in the last chapter,
concentrating on situations where multiple inputs and/or output files are used, and where
correspondences in these structures must be examined in constructing the program
structure.

4.1 Processing record sets in a sequential file

 A problem that occurs frequently in data processing involves accumulating totals
in a serial file for a set of records having the same record identifier. Frequently,
programs are based on the incorrect structure shown below:

Record
*

°Control break

File

° Not a control
break

The resulting program is more complex, harder to understand, and certainly harder to
maintain than a program based on the correct structure, as the next two sections recount.

4.1.1 Getting It Wrong--A Cautionary Tale7

 Consider the following problem: A warehouse records a transaction for every
item received into or issued out of the warehouse. At the end of the day, the transaction
file is sorted by item number, and a "Daily Net Movement Summary" showing the net
movement of each item into or out of the warehouse is produced. The format is shown
below:

 Daily Net Movement Summary

 A12345 40
 A23456 -30

 Z13579 25

7 This section is adapted from an article with the same title by Michael Jackson found in Cameron [1]

 53

 End Summary

 Experienced programmers have seen this type of problem, and even those who
don't know about it can find its solution in that very fine book, Principles of Program
Design by Michael A. Jackson!

 This story is about a novice programmer who hadn't seen the problem before. He
sketched out a top-down solution to the program and arrived at the following
pseudocode:

begin
 reset transfile; read transfile; writeln(' Daily Net Movement Summary');
 while not end-of-file do
 if new group then
 end old group
 start new group
 else
 process record
 endif
 read transfile
 endwhile
 writeln('End Summary');
 close file
end

 Of course, some of you more experienced programmers will see immediately that
something isn't quite right. Our novice, however, proceeded to code the program in
Pascal and run it.

The program produced the following output:

 Daily Net Movement Summary
 0
 A12345 40
 A23456 -30

 Z13579 25
 End Summary

What was that first line containing 0, the novice wondered? After a little thought, he
realized it was due to ending an old group before the first group. He had heard
something about a first-time-switch from a colleague down the corridor, so he added the
following fix to his original structured code:

begin
 reset transfile; read transfile; writeln(' Daily Net Movement Summary');

 54

 sw <-- false;
 while not end-of-file do
 if new group then
 if (sw) then
 end old group
 else sw <--true
 start new group
 else
 process record
 endif
 read transfile
 endwhile
 writeln('End Summary');
 close file
end

 Running the program again, he was gratified to see the first line disappear from
the output, and soon after, the program was put into production. After a few weeks, a
clerk from the user department came to our programmer and said, "Look, there's no total
for the last group!" Of course, you experienced programmers would have known this,
since initially the end-group and start-group operations had been paired, but the
introduction of the first time switch removed one of the end-groups. As a result, there
was a group started but not ended, and indeed, this was the last group in the file. So our
novice programmer made the obvious correction, arriving at the code shown below:

begin
 reset transfile; read transfile; writeln(' Daily Net Movement Summary');
 sw <-- false;
 while not end-of-file do
 if new group then
 if (sw) then
 end old group
 else sw <--true
 start new group
 else
 process record
 endif
 read transfile
 endwhile
 end last group
 writeln('End Summary')
 close file
end

 55

Pretty soon, on Thanksgiving day, in fact, the program was run, and the output produced
was quite unexpected:

 Daily Net Movement Summary

 0

 End Summary

 Obviously, something was wrong--the unwelcome 0 line had reappeared--why?
Then, it became clear. There had been no transactions, and so there were no groups. The
mystery line was the result of ending the last group--only there wasn't any last group.

 Our novice programmer was tempted to do something with the first-time switch,
sw, but, having heard something about "defensive programming" decided against this
strategy. Defensive programming appears to be the theory, that, when making changes to
a program, whose possible side effects aren't understood, one ought not to tamper with
parts of the program that appear to work. So, our novice decided to add a second switch,
sw2, as shown below:

begin
 reset transfile; read transfile; writeln(' Daily Net Movement Summary');
 sw <-- false; sw2 <-- false;
 while not end-of-file do
 if new group then
 if (sw) then
 end old group
 else sw <--true
 start new group
 else
 process record
 sw2<--true
 endif
 read transfile
 endwhile
 if (sw2) then
 end last group
 writeln('End Summary')
 close file
end

After recompiling his program, our programmer ran it against an empty transaction file
with the desired result:

 Daily Net Movement Summary
 End Summary

 56

Clearly, our programmer's trials were at an end. The program ran again for the next 18
months.

 Then one day, a clerk from the user department came in and said, "Look, the last
group has been left off the printout again!" The diagnosis was easy. An old, incorrect
version of the program had been run. But, a couple of days of intensive detective work
showed that this was not the case--the correct version of the program had been run! The
only possibility was a transient hardware error or some random problem with the
operating system.

 Indeed, this seemed to have been one of those rare occasions. After all, the
problem hadn't occurred before--at least, not since the 'end last group' fix had been added
to the program.

 Then, a funny thing happened. The production clerk came in one day, and said to
our programmer: "Do you remember that last group that was left off the printout? Well, I
got hold of the transaction input file, and found there were 843 transactions." "So what?"
replied the programmer. "Well, there were 842 group totals on the printout." "I don't see
that that's relevant", said the programmer, "but thank you for mentioning it to me."

 That night he took the program home, and studied it carefully. Suddenly it
dawned on him! Of course! If there were 843 transactions and 843 totals, then each
group contained exactly one record: so the condition 'new group' would be true on every
card, and it would always be the 'if'; that was executed and never the 'else'. But the
instruction to set sw2 to true was only in the 'else' clause! So sw2 was never set to true,
and the last group was never ended.

 Our programmer, having diagnosed the problem, solved it easily by adding a
statement to set sw2 true to the first clause of the 'if-else' as shown below:

begin
 reset transfile; read transfile; writeln(' Daily Net Movement Summary');
 sw <-- false; sw2 <-- false;
 while not end-of-file do
 if new group then
 if (sw) then
 end old group
 else sw <--true
 start new group
 sw2<--true
 else
 process record
 sw2<--true
 endif
 read transfile

 57

 endwhile
 if (sw2) then
 end last group
 writeln('End Summary')
 close file
end

 Obviously, the program is now perfect and correct. But, of course, it has only
been running for three months in its new form, and I will keep you posted if there are any
new surprises.

* * * * *

And the moral? It's this: the structure of the program produced by our novice
programmer is one we often see:

Record
*

°Control break

File

° Not a control
break

and this structure is wrong. Not inferior; not inelegant; just plain wrong. The difficulties
were all caused by the 'end group' instructions. Now, how often should we end a group?
Why, once per group! Where, in this program, is there a component that processes each
group? There is no such component, and therefore the 'end group' instructions cannot be
correctly allocated to the program structure. That's what all the difficulty was about.

 Of course, all of us experienced programmers never make this kind of mistake.
But, I know many very experienced programmers who make just this sort of mistake on
bigger and more obscure programs; this type of mistake--having the wrong program
structure--occurs frequently!

 A second moral is this: Avoid first time switches like the plague! Each adds two
possibilities to consider, and a program with n switches adds 2n possibilities, and
becomes quite unintelligible. First time switches are usually introduced because a
program's structure is not correctly understood--they thus conceal rather than make
explicit a program's true structure.

 58

4.1.2 Getting It Right

 Here is how to design the program correctly using JSP:

1 Draw a system diagram

 When the system diagram is self-evident, we can omit it. We do so here.

2 The structure diagram below shows the input and output structures together with their
correspondences:

Transaction
file

 Transaction
 group

Transaction
*

Report

Title line

Report body

End line

 Total line

 *

 *

Input file Report file

There is one "Daily Net Movement Summary Report" per daily transaction file; for each
group of transactions recording receipts and issues for a single item, one report line is
produced.

3 The single program structure based on correspondences between the input and output
data structures is shown below:

 59

*
 Consume records;
 accumulate net
 movement

Consume daily
transaction file;
Produce report

Consume file
body;
Produce
report body

Close file;
Display

ending line
Open file;
Display
report title

 Consume group;
 Produce report
 line

*

4 The operations needed by the program are listed and allocated to the basic program
structure below:

operation where? how often?

1 reset(f) once at start
2 writeln(' Net Daily Movement Summary')
 once at start
3 writeln(' End Summary') once at end
4 close(f) once at end
5 groupid := rec.itemno once/group in component to process a group
6 netqty := 0 once/group in component to process a group
7 netqty := netqty + rec.qty once/transaction in component to process a record
8 xread(f,rec) once per record at start; in component that
 processes each record
9 write(' ', groupid, netqty) once per group in component to produce a report
 line
10 writeln once after title; at start; at end
 once before ending line

 The allocation of these operations to the basic program structure to form an
elaborated program structure is shown below:

 60

Consume group;
Accumulate netqty

9

*
 Consume record;
 accumulate net
 movement

Consume daily
transaction file;
Produce report

Consume file
body;
Produce
report body

Close file;
Display

ending line
Open file;
Display
report title

 Consume group;
 Produce report
 line

*

 Initialize group

 5,6

 7,8

 1,2,
 8, 10 3,4,

 10

5 Finally, the translation of the program structure into structure text, with the conditions
for iteration and selection specified, is shown below:

P-netmovement seq
 reset(infile);
 xread(infile, rec);
 writeln(' Daily Net Movement Summary');
 writeln;
 C-file-body iter <while not eofbit>
 C-group seq
 groupid := rec.itemno;
 netqty := 0;
 C-groupbody iter <while not eofbit and (groupid = rec.itemno)>
 netqty := netqty + rec.qty;
 xread(infile, rec);
 C-groupbody end
 writeln(' ', groupid, netqty);
 C-group end

 61

 C-file-body end
 close(infile);
 writeln;
 writeln(' End Summary')
P-netmovement end

 The translation of the structure text into Pascal with a suitably redefined read
procedure is left as an exercise.

4.2 Group-id Rule

 The accumulation of totals over a record set based on a record identifier on which
the records are sorted is a typical example of hierarchical record processing. Each level
of the hierarchy contains an iteration of records. The following design rule applies:

Group-id Rule: If a structure contains a component that is a
group of records all having the same value of a (usually sorted)
identifier, then there must be an operation that stores the value
of the identifier. This operation should be allocated once per
group, at the beginning of the group.

 In the structure text to produce the "Daily Net Movement Summary", the group-id
variable stores the value of each group, and is allocated at the start of the component to
process a group in accordance with the group-id rule.

4.3 Collating

 A class of data processing problems concerns the correspondence among input
files rather than between input and output files. Collating, or "matching" sequential files
is such a problem.

 Consider the following problem from census processing involving three files,
each sorted by the same geographic identifier or geocode, a composite key consisting of
concatenated country, province, district, and village identifiers. The first file is a
reference file containing the set of village identifiers together with their names; the
second file contains population data for each village, while the third data file contains
housing data for each village. The problem is to produce a listing of geocodes classified
into the following four types:

 1 - geocodes from the reference file with no corresponding data on either
population or housing file;
 2 - geocodes with matching population and housing data;
 3 - geocodes with matching population data (but no housing data);
 4 - geocodes with matching housing data (but no population) data

 Each of our files has the same structure, namely:

 62

File

Rec
*

But what are the correspondences on which our program structure is based? Clearly,
each type in our listing requires that we examine the geographic code in all three files.
The program component to process any of the types in the listing doesn't correspond to
any single file structure. The program structure may be depicted as shown below:

C-files;
P-listing

C-georec
*

P-type 1 P-type 2 P-type 3 P-type 4
° ° ° °

Translation of this program structure gives the following structure text:

P-geomatch seq
 reset(georef); reset(pop); reset(hous);
 readgeo(georef, georec); readpop(pop(pop, poprec); readhous(hous, housrec);
 writeln(' Geographic code analysis ');
 writeln;
 C-georef iter <while not eofref)>
 C-type sel < georec.geocode = poprec.geocode=housrec.geocode >
 type := 1;
 writeln(' ', type, ' '; georec.geocode, georec.geoname, poprec.pop,
 housrec.hhlds);
 readpop(pop, poprec); readhous(hous, housrec);
 C-type alt < poprec.geocode = georec.geocode < housrec.geocode >
 type := 2;
 writeln(' ', type, ' ', georec.geocode, georec.geoname, poprec.pop);
 readpop(pop, poprec);
 C-type alt < poprec.geocode > georec.geocode = housrec.geocode >
 type := 3;
 writeln(' ', type, ' ', georec.geocode, georec.geoname, housrec.hhlds);

 63

 readhous(hous, housrec);
 C-type alt < poprec.geocode > georec.geocode < housrec.geocode >
 type := 4;
 writeln(' ', type, ' ', georec.geocode, georec.geoname);
 C-type end
 readgeo(georef);
 C-georef end
 close(georef); close(pop); close(hous);
 writeln;
 writeln(' End Listing')
P-geomatch end

 Note that the single read-ahead rule has been used; in particular, note the test of
the global variable, eofrec, instead of eof(georef) in the iteration over the village
reference file. The Pascal program is shown below:

program geomatch (input, output);
const
 geoname = 'data place 52:Development:JSP.pas:geo';
 popname = 'data place 52:Development:JSP.pas:pop';
 housname = 'data place 52:Development:JSP.pas:hous';
type
 geocode = packed array[1..10] of char;
 refrec = record
 refcode: geocode;
 refname: packed array[1..35] of char;
 end;
 poprec = record
 refcode: geocode;
 persons: integer;
 end;
 housrec = record
 refcode: geocode;
 hhlds: integer;
 end;
 reff = file of refrec;
 popf = file of poprec;
 housf = file of housrec;

 var
 matchtype: integer;
 eofref, eofpop, eofhous: boolean;
 georef: reff;
 pop: popf;
 hous: housf;
 recref: refrec;

 64

 recpop: poprec;
 rechous: housrec;

 procedure readgeo (var georef: reff; var recref: refrec);
 begin
 eofref := eof(georef);
 if not eof(georef) then
 read(georef, recref);
 end;

 procedure readpop (var popref: popf; var recpop: poprec);
 begin
 eofpop := eof(pop);
 if not eof(pop) then
 read(pop, recpop);
 end;

 procedure readhous (var housref: housf; var rechous: housrec);
 begin
 eofhous := eof(hous);
 if not eof(hous) then
 read(hous, rechous);
 end;

begin
 reset(georef, geoname);
 reset(pop, popname);
 reset(hous, housname);
 readgeo(georef, recref);
 readpop(pop, recpop);
 readhous(hous, rechous);
 writeln(' Geographic code analysis ');
 writeln;
 while not eofref do
 begin
 if (recref.refcode = recpop.refcode) and
 (recpop.refcode = rechous.refcode) then
 begin
 matchtype := 1;
 writeln(' ', matchtype, ' ', recref.refcode, recref.refname,
 recpop.persons, rechous.hhlds);
 readpop(pop, recpop);
 readhous(hous, rechous);
 end
 else if (recpop.refcode = recref.refcode)
 and (recref.refcode < rechous.refcode) then

 65

 begin
 matchtype := 2;
 writeln(' ', matchtype, ' ', recref.refcode, recref.refname,
 recpop.persons);
 readpop(pop, recpop);
 end
 else if (recpop.refcode > recref.refcode)
 and (recref.refcode = rechous.refcode) then
 begin
 matchtype := 3;
 writeln(' ', matchtype, ' ', recref.refcode, recref.refname,
 rechous.hhlds);
 readhous(hous, rechous);
 end
 else if (recpop.refcode > recref.refcode)
 and (recref.refcode < rechous.refcode) then
 begin
 matchtype := 4;
 writeln(' ', matchtype, ' ', recref.refcode,
 recref.refname);
 end;
 readgeo(georef, recref);
 end;
 close(georef);
 close(pop);
 close(hous);
 writeln;
 writeln(' End Listing')
end.

Exercises

(i) Translate the structure text for the net movement summary report into Pascal,
redefining a suitable read procedure to process the input transaction file.

 In exercises (ii)-(iv), one person or team uses JSP to design a program
corresponding to the initial specifications given; then, to produce the modifications given
to the initial problem, a second person or team modifies the initial design, producing a
modified report.

(ii) A student grade file contains the grades for students taking courses at the university.
Each record contains student-id, student name, course-id, course name and grade. The
file is sorted by course-id within student-id. A report, "Student Grades", is desired that
contains for each student his or her grades and the average for all the courses taken
during the semester. In addition, the report prints a summary containing the number of
students in all courses, and average grade for all courses.

 66

 Modification: Each record contains a code that indicates the subject that a student is
specializing in. The file is sorted by course-id within student-id within faculty-id.
Produce a summary line for each faculty id containing the number of students
specializing in the faculty and their average grade.

(iii) A population census file is sorted by person-id within household-id. Each record
contains household-id, person-id and gender coded 1 for female and 2 for male. Print
report lines containing the household-id and the number of males and females in each
household. Print a summary line with the number of males, females and households in
the file, together with the average household size.
 Modification: Each record also includes enumeration-area (EA) identification code,
and the file is sorted by person-id within household-id within enumeration area. Modify
the program to include in the report the number of males and females in each EA,
together with average household size in each EA.

(iv) A program has to process a single input file and produce one report. The input file
is sorted by customer-id. Each record contains a product identifier and quantity field,
which indicates how much of the product that a customer has ordered. There are two
types of customer, discount customers and normal customers, distinguished by a code of
"D" or "N" in a record. A database can be directly accessed to give the cost per unit of a
product
based on the product identifier code and the outstanding debt of a customer, based on the
customer-id code. "D" type records also have a discount field, that represents the
percentage discount the customer gets on all items.
 The summary report consists of one line for each normal customer, two lines for each
discount customer, and two overall summary lines. The normal customer summary line
has the total value of the transactions, the old and the new debt. The first
line of a discount summary has the total value of the transactions, the discount level, and
the discounted value. The second line has the old debt and the new debt. The overall
summary totals the debts and values.
 Modification: Each header record contains an area code in addition to customer-id,
and the input is sorted on customer-id within area code. Modify the previous report to
include a
summary line for each area detailing the total value and total discounted value of the
transactions in that area.

 Exercises (v)-(vii) could be solved profitably using paired-problem-solving.

(v) [Part 1] In the collating problem discussed in Section 4.2, show the structure text and
Pascal code using the standard Pascal read procedure. Discuss the resulting program in
terms of its simplicity and intelligibility.
[Part 2] Now suppose that the population and housing files each could contain a group of
data records for any village code. Design a program using JSP to produce the required
listing of four types.

 67

(vi) [Part 1] In the collating problem discussed in Section 4.2, suppose that the village
reference file may contain geographic coding errors: in other words, there may be
unmatched geocodes on both the population and housing files. Write the structure
diagram and structure text for a program to produce a listing of geocodes classified into
the six resulting types of matching.
[Part 2] Produce the same listing as in Part 1 assuming that the population and housing
files may contain a group of records for any geographic code.

(vii) [Part 1] In addition to the village reference, population and housing files in the
collating problem discussed in Section 4.2, there is a mapping file that contains the
geographic features of each village. Write the structure diagram and structure text for
producing a listing of geocodes for every geocode, assuming (a) no errors on the village
reference file and (b) geographic coding errors on the village reference file. How many
types are there in each case?
[Part 2] Produce the same listing as in Part 1, assuming that the population and housing
files may contain a group of records for any geographic code.

 68

5. Errors and Invalidity

5.1 Introduction

 Error processing accounts for a high proportion of program code in information
systems. In on-line transaction processing, for example, the program that processes on-
line transactions includes a substantial dialogue with the user in which user errors are
detected, diagnosed, and the user prompted to reenter data. And in updating a set of
entities (for example, warehouse stock items) with current activity recorded on a
transaction (a stock shipment), the program that maintains the data must detect errors
such as a transaction for which no corresponding entity exists (an invalid part number),
or a transaction which is invalid for the corresponding entity (an order for a quantity of a
part that exceeds its current availability).

 We may specify validity at different levels: for a field (for example, numeric,
within a specified range, etc.); among different fields within a single transaction or record
(consistency checks); and within a broader context, such as an entity's entire history.
Any violation of these specifications of validity are treated as errors.

5.2 Error Versus Invalid Data

 Error data may be contrasted with good data--errors are mistakes by a user. It is
usual for an information system to process both error and good data. Hence, both error
data and good data are valid for a program component that handles error processing.
Invalid data, then, is data that is unspecified for a program component. The distinction
between error and invalid data is depicted below:

Data

Valid Data

Good Data Error Data

Invalid Data° °

° °

 Since programs must be designed to process error data as well as good data, the
data structures on which the program design is based must include errors as well as good
data.

5.3 Error Processing Design Objectives

 69

 The design of data structures which accommodate errors is not easy. Many
structures are possible, and we must make choices that affect the kind of errors that can
be distinguished, and affect how good data is processed in the presence of errors. These
choices are properly the concern of cognitive scientists and man-machine interface
specialists; the choices are influenced by the types of errors that are likely to occur and
how easily the user can correct them.

 As programmers, we may set ourselves the following design objectives:

 (i) The data structure should be known to the user, since it reflects the model of
the problem; included, is the part of the data structure that deals with errors.

 (ii) Diagnosis of errors should reflect the data structure - in fact, the diagnostic is
directly related to a named component of the data structure. The user should receive a
clear interpretation placed on his or her data.

 (iii) Insofar as possible, the data structure should be designed so as not to
interfere with the processing of good data.

 Let us illustrate these principles of error processing design with two examples.

 (1) A transaction file contains up to three transactions, identified as T1, T2 or
T3;. The file may be empty or contain any combination of the three transactions; but if
present, T2 must precede T3 and if T1 is present it must precede T2. We can depict the
file structure as below:

 File

T1 Pos T2 Pos T3 Pos

 T1 T2 T3° ° °

The diagram reflects the specification that any or none of T1, T2, or T3 may be present,
and if present, they must be present in the sequence T1 before T2 before T3.

 We can easily devise a structure to account for all possible errors such as the
following:

 70

 File

 T1 Pos T2 Pos T3 Pos

 T1 T2 T3° ° °

Error Group

 T4 *

Suppose our transaction file consists of TX, T1, T2, T3. Since TX is neither a T1, a T2,
or a T3, it will fall into the error group together with its successors. This data structure
has the unfortunate effect that any error causes the remainder of the file to be treated as
an error.

 The third design goal, to design the data structure so as not to interfere with the
processing of good data, is difficult to achieve. Instead of the data structure shown above,
we need to use some structure as:

 File

 T1 Pos T2 Pos T3 Pos

 T1 T2 T3*
 not (T1
 or T2 or
 T3)

*
 not (T2
 or T3)

*
 not T3

*
 Record

ErrGr 1 ErrGr 2 ErrGr 3 ErrGrX

° ° °

This structure is simple, but cumbersome and repetitive. Structures which take account
of errors are often so.

 (2) An identifier in Pascal consists of a letter (a-z) followed by any number of
letters or digits. Some examples of valid identifiers are: A, Alpha, A1k. We wish to
detect and print out a diagnostic for two error types:
 1A identifier doesn't begin with a letter
 A1+2 identifier contains illegal character(s)

 The structure diagram for well-formed identifiers is given below:

 71

Identifier body Letter

letter 0 digit 0

Identifier

Letter or digit *

When we consider the errors that the program must be designed to process together
with well-formed identifiers, we arrive at the following structure diagram that defines
valid data for the program:

° °

Identifier

ErrGrp1 Possible
 letter

 Identifier
 body

Non-letter Letter °*

 Letter Digit Error°

 character *

 To design the program, we follow the usual JSP design steps. The diagnostic
messages should be understandable and reflect the data structure on which the program
is based. For example, in response to the identifier input
 1AL+PH-A
the program might display the following:

 Character Message

 1 Identifier doesn't begin with a letter
 + Illegal character in identifier body
 - Illegal character in identifier body

Just as the syntax diagrams for Pascal syntactic constructs are available to the user of
Pascal, so, too, the data structure on which the compiler's syntax analyzer is based should
also be available. Many compilers prior to the 1980's omitted a description of how
syntax errors were handled, and may explain their sometimes arbitrary and user-
unfriendly treatment of errors.

5.4 Valid and Invalid Data

 72

 Data is valid for a program component if the operation of the component is
specified for the data; data is invalid for a program component if the operation of the
component is unspecified for the data.

 It follows that both good and error data are valid for a program component that is
concerned with error processing.

 A program component that receives its input directly from a human input, or from
an unreliable machine source, should be designed to accept all possible input data as
valid, and hence its operation must be specified for all data.

 However, a component that receives its input from another component of the same
system must not check the validity of its own input, but must be able to rely on the
correct operation of the component that invokes it. The attempt to have every component
check its own input is self-contradictory, as the following example shows:

 We wish to calculate overtime pay as part of a payroll system. Calculation is
specified for times not exceeding 11 hours and 59 minutes. The result is a data item,
overtime-pay. If we cannot rely on the values of hours and minutes in the input data, we
may reasonably write:

 if (hours > 11) or (minutes > 59)
 then
 errorproc
 else
 calculate (hours, minutes, overtime);

The structure of this component is:

° °
calculate

Compute
O-T Pay

errorproc

The procedure, calculate, is relying on the correct functioning of the component,
Compute O-T Pay, to ensure the validity of the hours and minutes values. Otherwise,
the procedure calculate must itself check its inputs with a statement like:

 if hours > 11 or minutes > 59
 then
 badcalc
 else
 goodcalc;

 73

This gives as the complete structure:

° °
calculate

Compute
O-T Pay

errorproc

°
badcalcgoodcalc

°

If we apply the same reasoning to goodcalc, and to each of its "good" successor
components, we are driven to an infinite regress! We must reconcile ourselves to the
idea that the program component calculate will be unspecified for certain data inputs.

 We can summarize our conclusions about designing components with respect to
valid data as follows:

 (i) Every component specification must define precisely what data is valid for the
component;
 (ii) Every component must be designed and coded on the assumption that its data
is valid;
 (iii) If component B is a part of component A, then A is responsible for ensuring that the
data passed to B is valid for B.

Exercises

(i) Using the syntax diagrams as the definition of good data, design data structures to
process possible user errors for the following Pascal syntactic entities: (a) integer; (b)
real; (c) program heading; (d) const declaration

 74

6. Recognition Difficulties and Backtracking

6.1 Multiple read-ahead rule

 Sometimes a condition to be evaluated requires us to look ahead beyond the
current character or record. Consider the following example:

 Write a program to remove all comments from a C program. A
comment in C begins with the characters, /*, and ends with the characters,
*/. Take note of the fact that C allows strings, any characters enclosed by
double-quotes ("), as well as constants, which are enclosed in single
quotes.8

 Although the input and output files are both text files, we will avoid explicitly
modeling the input file as an iteration of lines for reason that will become evident in the
later chapter dealing with structure clashes. It will suffice on reading the input file to
recognize an end-of-line separator so that we can write an end-of-line separator, thus
preserving the input line structure on the output file. In addition, we need to recognize a
comment, a string, a constant, and a character.

 The structure diagram of the input file is:

"C" Program

syntactic
unit

*

° ° ° °comment string constant characterend-of-line
separator

°

The output file has the same structure without comments.

 In order to recognize a "C" comment, we need to read two consecutive characters.
A dynamic view of the situation is to read the first character, and then, depending on
whether we have a slash character, to read the second character, and, if it is an asterisk, to
record the fact that we have a comment, if we are not processing a string. We may be led
to use a Boolean variable to store when we are processing a string or constant.

 This dynamic view hides the underlying structure of a comment shown below:

8 The example is from "The C Programming Language" by Brian Kernighan and Dennis Ritchie, Second
Edition, Exercise 1-23.

 75

comment

beginning
delimiter

body of
comment

ending
delimeter

characterslash
'/'

asterisk
'*'

*
asterisk

'*'
slash

'/'

 An approach based on the static view of a comment's data structure is to examine
two consecutive characters for the two-character pattern, '/*'. Recognition of a comment
requires that we read two characters prior to the selection.

 In the situation where we have to perform several read operations to evaluate a
condition, we need a different rule for allocating the read operations. It is called the
multiple read-ahead rule:

Multiple read-ahead rule:
 (1) determine n--the number of characters or records to be read ahead
 (2) declare n record areas, each with a data part and an eof flag
 (3) define the Nread procedure
 (4) allocate n Nread operations at the beginning, immediately after the open operation,
and 1 Nread operation at the end of the component that processes a record (character).

 The structure text and data structure to implement the multiple read ahead rule are
shown below:

 (a) structure text (b) data structure

 Nread seq
 area0 := area1; |eof0 | data0| |rec0|
 area1 := area2; |eof1 | data1| |rec1|

 areaN-1 := areaN; |eofN | dataN| |recN|
 eofinfile := eof(infile);
 Nnew select <not eofinfile>
 readinfile(infile, areaN);
 Nnew end
 Nread end

 Here is a Pascal implementation of the Nread procedure:

 76

 type
 area = record
 c: char;
 eofbit, eolnbit: boolean;
 end;
 var
 f: text;
 area0, area1: area;
 procedure xread; {read a character from a text file}
 begin
 area0 := area1;
 area1.eofbit := eof(f);
 with area1 do
 if not eofbit then
 begin
 eolnbit := eoln(f);
 c := f^;
 get(f);
 end;
 end;

 Nread uses the record area rec0 as the current record, and the records in rec1, rec2, ...,
recn only to look ahead n characters or records. A more efficient procedure would point
to
the record areas instead of moving data from one to another.

 Here is the main program for this example:

program stripcomments (input, output);
{ program strips comments from a "c" program" }
{ Kernighan&Ritchie p. 34, exercise 1-23 }
const
 slash = '/';
 asterisk = '*';
 strdel = '"'; {string delimeter}
 constdel = ''''; {constant delimeter}
 infilename = 'data place 52:Development:JSP.pas:cprogram';
begin
 reset(f, infilename);
 xread;
 xread; {2 read-aheads}
 while not area0.eofbit do
 if (area0.c = slash) and (area1.c = asterisk) then
{process comment}
 begin
 xread; {strip beginning slash}

 77

 xread; {strip beginning asterisk}
 while not ((area0.c = asterisk) and (area1.c = slash)) do
 xread; {strip character of comment}
 xread; {strip ending asterisk}
 xread; {strip ending comment}
 end
 else if (area0.c = strdel) then
{process string}
 begin
 write(area0.c);
 {write beginning delimiter}
 xread;
 while (area0.c <> strdel) do
 {process body of string}
 begin
 write(area0.c);
 xread;
 end;
 write(area0.c);
 {write ending delimiter}
 xread;
 end
 else if (area0.c = constdel) then
{process constant}
 begin
 write(area0.c);
 {write beginning delimiter}
 xread;
 while (area0.c <> constdel) do
 {process body of constant}
 begin
 write(area0.c);
 xread;
 end;
 write(area0.c);
 {write ending delimiter}
 xread;
 end
 else if area0.eolnbit then
 begin
 writeln;
 xread
 end
 else
{process anything else}
 begin

 78

 write(area0.c);
 xread;
 end;
 close(f);
end.

 Note: Compare the same program written in C, most of which is shown below.
Note in particular that the multiple read-ahead rule is followed:

#include <stdio.h>
#define SLASH '/'
#define ASTERISK '*'
#define DQUOTE '"'
#define SQUOTE '\x27'

char c,d; /*global variables */

void nextchar(void); /* multiple read-ahead; the first character is readinto c,
 the second into d */
main()
{
nextchar(); /* multiple read ahead at start */
nextchar();
while (c != EOF)
 if (c == SLASH & d == ASTERISK) { /* process comment */
 nextchar(); /* strip beginning slash */
 nextchar(); /* strip beginning asterisk */
 while (! (c == ASTERISK & d == SLASH))
 nextchar(); /* strip character of comment */
 nextchar(); /* strip ending asterisk */
 nextchar(); /* strip ending slash */
 }
 else if (c == DQUOTE) { /* process string */
 putchar(c) /* output beginning delimeter */
 nextchar();
 while (c != DQUOTE) { /* process body of string */
 putchar(c);
 nextchar();
 }
 putchar(c) /* output ending delimeter */
 nextchar();
 }
 else if (c == SQUOTE) { /* process constant */
 ...
 ...
 }

 79

 else { /* process anything else */
 putchar(c);
 nextchar();
 }
return 0;
} /* end main */

void nextchar(void)
{
 c = d;
 if (c != EOF)
 d = getchar();
}

6.2 Backtracking

 The multiple read-ahead technique discussed in the previous section is fine as long as
we know that we can evaluate a condition after a known number of records or characters.
But this is not always the case. Sometimes we cannot recognize a condition after any
fixed number of reads. In this situation we need a different technique.

 Let us return to our earlier example which computed the total net movement for
each part group in a file of warehouse transaction records sorted by part number. As a
quality control measure, each shipment and order must be verified by a warehouse
supervisor when the goods are actually received into or issued out of the warehouse, and
the supervisor's initials (a two-character code) are then recorded on each transaction. At
the end of the day, it is desired to produce a report showing net movement for each part;
however, parts are to be included on the report only if every shipment and order
transaction has been properly verified, as indicated by a code in the initials field on each
transaction record. Parts with one or more unverified shipment or order transactions,
indicated by a blank in the initials field, should be written on an error listing; they are not
to be included in the report (no total line should be generated).

 We don't know how many shipment and order transactions exist for any part
number. Thus, we don't know how many records we have to read in order to recognize
whether we have a part all of whose shipments and orders have been verified.

 Here are the data structures for the input and output files:

 80

 Transaction

 Daily
 transactions

Part Group*

° °
Verified
Group

Unverified
Group

*
Transaction

*
Transaction

Input File

Report

 Display
 title

Display
report body

Display
end line

 Display
 report line

*

 Report file

Error
Report

Error
Group

*

*

Error File

 Each part group is either completely verified or not. There are innumerable ways
that a part group may be unverified, and this creates a difficult recognition problem. If,
however, we treat the selection as being ordered and place the verified group as the left
component of the selection, then we don't have to recognize all of the ways of obtaining
an unverified group--a group is unverified if it is not completely verified.

 The design of our program proceeds in three stages:

(1) Design the program as if a friendly demon will tell us whether a group is verified or
not. That is, at first, ignore the recognition difficulty and design the program as if the
selection condition can be evaluated at the start of the selection.

 Using JSP, we obtain the program structure text below:

CFILE-PREPORTS seq
 reset(transfile);
 rewrite(reportfile);
 rewrite(errrlist);
 xread(transfile); {read header}
 P-REPORTBODY iter until eofbit
 groupkey := trans.key;
 GROUP-OUT select verified-group
 total := 0;
 xread(transfile);
 VERIFIED-GROUP iter until eofbit or trans.key <> groupkey

 PROCESS-TRANS select trans.type = 'S'
 total := total + amount;
 PROCESS-TRANS alt trans.type = 'O'

 81

 total := total - amount;
 PROCESS-TRANS end
 xread(transfile);
 VERIFIED-GROUP end
 writeln(reportfile,groupkey, total);
 GROUP-OUT alt unverified-group
 UNVERIFIED-GROUP iter until eofbit or trans.key <> groupkey
 writeln(errlist, trans.rec);
 xread(transfile);
 UNVERIFIED-GROUP end
 GROUP-OUT end
 P-REPORTBODY end
 close(transfile);
CFILE-PREPORTS end

 We cannot, of course, translate the structure text into a program, since we have no
way of specifying the condition for a verified group. However, we could, acting as our
own friendly and omnipotent demon, code the first transaction of each part group with a
code indicating whether every transaction in the group had been verified or not, and thus
informally demonstrate the program's acceptability.

(2) In the second stage of program design, instead of selecting a verified part group, let's
posit that we have a verified group. If we find an unverified transaction in the group, we
will quit this component, and go to the component that processes an unverified group.
Since this control structure is not currently implemented in programming languages, we
will need to introduce it. The structure text and pseudocode for this backtracking control
structure are shown below:

 structure text Pascal implementation

 A posit begin {posit}
 do B; do B;
 A quit <condition> if <condition> then
 do C; goto 1; {quit, go to admit part}
 A admit do C;
 do D; goto 2; {finished--no error}
 A end 1: {admit error}
 do D;
 2: end

Note that if we quit the posit component, control is passed to the start of the admit
component; while if we do not quit the posit component, control is transferred, after we
have completed any statements in the posit component that follow the quit statement, to
the end line of the posit..admit..end control structure. Because the control structure has
not been implemented, we must resort to using the forbidden goto statement. Note,
however, that this is not a case of an unrestricted goto; the labels are synonyms for the

 82

admit and end lines of a semantically well-defined but unimplemented control structure.
Moreover, it is at the heart of our method to design intelligible programs--programs that
reflect the problem structure. Designing our program to accommodate the rule "don't use
goto statements" instead of the problem will result in a program structure that is distorted
and will be more costly to maintain.

 The program structure text reflecting the second design stage with the posit..admit
control structure is shown below:

CFILE-PREPORTS seq
 reset(transfile);
 rewrite(reportfile);
 rewrite(errrlist);
 xread(transfile); {read header}
 P-REPORTBODY iter until eofbit
 groupkey := trans.key;
 GROUP-OUT posit verified-group
 total := 0;
 xread(transfile);
 VERIFIED-GROUP iter until eofbit or trans.key <> groupkey
 quit VERIFIED-GROUP if trans.init = blanks
 PROCESS-TRANS select trans.type = 'S'
 total := total + amount;
 PROCESS-TRANS alt trans.type = 'O'
 total := total - amount;
 PROCESS-TRANS end
 xread(transfile);
 VERIFIED-GROUP end
 writeln(reportfile,groupkey, total);
 GROUP-OUT admit unverified-group
 UNVERIFIED-GROUP iter until eofbit or trans.key <> groupkey
 writeln(errlist, trans.rec);
 xread(transfile);
 UNVERIFIED-GROUP end
 GROUP-OUT end
 P-REPORTBODY end
 close(transfile);
CFILE-PREPORTS end

(3) In the third and last stage of design, we identify and deal with side effects. Side
effects may be categorized into three types:
 (i) neutral - changes in the state of the computation resulting from the execution
of the posit block have no adverse affect on the final result;
 (ii) positive - computations resulting from the posit are valid in the admit part,
and save the trouble of recomputing;

 83

 (iii) negative - changes in the posit have to be undone; the state of the
computation has to be restored at the start of the admit block to the state that existed at
the start of the posit block

 It is from third type of side effects that the name "backtracking" comes: we need
to "undo" what we've done from the beginning of the posit until we discover that the
posit condition does not hold, that is, "backtrack" or, in other words, restore the state of
the computation at the start of the posit part. Restoring the state of the computation that
existed at the start of the posit suggests that we need to save the state of the computation
at this point.

 In our problem we have negative side effects that are associated with reading the
input file. Adverse side effects are usually associated with reading/writing of serial files.
The best and easiest way to deal with this side effect is with procedures that 'note' and
'restore' the file. The note procedure is invoked immediately after the posit operation,
and the restore procedure immediately after the admit statement.

 The complete PASCAL program with the note and restore procedures follows:

 program backtracking (input, output);
{example adapted from "Constructive Methods of Program design" }
{ by M. Jackson to illustrate backtracking}
 const
 fname = 'data place 52:Development:JSP.pas:WarehouseTrans';
 reportname = 'data place 52:Development:JSP.pas:Report';
 errorname = 'data place 52:Development:JSP.pas:ErrorList';
 blank = ' ';
 var
 f, report, error: text;
 sum, groupkey, cnt, savcnt: integer;
 eofbit: boolean;
 key, qty: integer;
 initials: packed array[1..3] of char;
 label
 1, 2;

 procedure xread;
 begin
 eofbit := eof(f);
 if not eofbit then
 readln(f, key, qty, initials);
 end;

 procedure note;
 begin
 savcnt := cnt;

 84

 end;

 procedure restore;
 begin
 reset(f);
 cnt := 0;
 repeat
 xread;
 cnt := cnt + 1;
 until cnt = savcnt;
 groupkey := key; {error group}
 end;

begin {main program}
 reset(f, fname);
 rewrite(report, reportname);
 rewrite(error, errorname);
 cnt := 0;
 xread;
 cnt := cnt + 1;
 writeln(report, ' Daily Net Movement Report ...');
 writeln(error, ' Error List');
 while not eofbit do
 begin
 groupkey := key;
 {posit verified group}
 note;
 sum := 0;
 while not eofbit and (groupkey = key) do
 begin
 if (initials = blank) then
 goto 1; {quit verified group}
 sum := sum + qty;
 xread;
 cnt := cnt + 1;
 end;
 writeln(report, ' ', groupkey, ' ', sum);
 goto 2;
 {end verified group}
1: {error group}
 restore;
 while not eof(f) and (groupkey = key) do
 begin
 writeln(error, ' ', key, qty, initials);
 xread;
 cnt := cnt + 1;

 85

 end;
 {end error group}
2: end; {while not eof(f)}
 close(f);
end.

6.3 Backtracking (within iteration)

6.3.1 quit in iteration

 Consider the following problem:

A file consists of a sequence of integers. Print the integers as long as their
cumulative sum doesn't exceed 100.

 We would probably structure the program text as follows:

F-SEQ seq
 reset(f);
 xread(f,x);
 sum := 0;
 F-BODY iter while not eofbit
 sum := sum + x;
 F-WRITE sel <sum <= 100>
 write(x);
 F-WRITE end
 xread(f,x)
 F-BODY end
F-SEQ end

Note that the problem states that we are done when the cumulative sum exceeds 100. In
our structure text, however, we continue iterating until the end of file is reached.

 We will introduce quit as a new element in our structure text. Its syntax is

quit <component> <condition>

and has the meaning "quit from the specified program component if the condition
specified is true."

 Our program structure text becomes:

F-SEQ seq
 reset(f);
 xread(f,x);
 sum := 0;

 86

 F-BODY iter while not eofbit
 sum := sum + x;
 quit F-BODY if sum >100;
 write(x);
 xread(f,x);
 F-BODY end
F-SEQ end

We could have achieved the same result by putting a compound condition at the head of
the iteration as shown below:

F-SEQ seq
 reset(f);
 xread(f,x);
 sum := 0;
 F-BODY while not eofbit and (sum <= 100)
 sum := sum + x;
 write(x);
 xread(f,x);
 F-BODY end
F-SEQ end

We don't really need a backtracking construct here, because there are no adverse side-
effects.

6.3.2 Backtracking in iteration

 Let us consider a slight modification to the problem presented above. The
program is to print the entire file only if the cumulative sum of the integers exceeds 100;
in any case, the cumulative sum is to be printed.

 The input file structure is as follows:

File

� <= 100

Integer
*

Integer
*

° °
� > 100

The design of the output and basic program structures is left as an exercise.

 87

 We will treat this problem as one requiring backtracking and proceed in three
stages as before:

Stage 1: Design the program as a selection

F-SEQ seq
 reset(f);
 xread(f,x);
 sum := 0;
 F-BODY sel {sum <= 100}
 F-BODY-ITER1 while not eofbit
 sum := sum + x
 xread(f,x);
 F-BODY-ITER1 end
 F-BODY alt {sum > 100}
 F-BODY-ITER2 while not eofbit
 sum := sum + x;
 write(x);
 xread(f,x);
 F-BODY-ITER2 end
 F-BODY end
 write(sum);
F-SEQ end

Stage 2: Change the selection to a posit...admit

 In addition to the lines with sel and alt, we need to add

quit F-BODY if sum >100;

immediately after the statement that updates the value of the variable, sum, in the
component, F-BODY-ITER1.

Stage 3: Deal with side effects

 When we find that the cumulative sum exceeds 100 in the posit component, we
have already read part of the input file without having printed it. There is more than one
way to deal with this side effect. One way is to reset the input and initialize the sum at
the start of the admit--in effect, start over. We obtain the structure text shown below:

F-SEQ seq
 reset(f);
 xread(f,x);
 sum := 0;
 F-BODY posit {sum <= 100}

 88

 F-BODY-ITER while not eofbit
 sum := sum + x
 quit F-BODY if sum >100;
 xread(f,x);
 F-BODY-ITER1 end
 F-BODY admit {sum > 100}
 reset(f); {reinitialize}
 xread(f, x);
 sum := 0;
 F-BODY-ITER2 while not eofbit
 sum := sum + x;
 write(x);
 xread(f,x);
 F-BODY-ITER2 end
 F-BODY end
 write(sum);
F-SEQ end

 Another way to deal with the undesirable side effect of having read some of the
input file without printing when the posit condition has been disproved is to save the
integers read to a print file; if and when the cumulative sum exceeds 100, then, at the
start of the admit component, we will copy the print file to the printer. The partial sum
that has been computed in the posit component is mostly a positive side effect--we must
only undo the last operation that caused the sum to exceed 100; the rest of the
computation of the cumulative sum does not have to be recomputed. The structure text is
shown below:

 F-SEQ seq
 reset(f);
 xread(f,x);
 sum := 0;
 F-BODY posit {sum <= 100}
 rewrite(g); {print file}
 F-BODY-ITER1 while not eofbit
 sum := sum + x
 quit F-BODY if sum >100;
 write(g, x);
 xread(f,x);
 F-BODY-ITER1 end
 F-BODY admit {sum > 100}
 sum := sum - x; {undo sum := sum + x}
 rewrite(g);
 gread(g, x); {gread is file procedure for g}
 F-PRINT iter while not eofgbit {eofgbit associated with gread}
 gread(g, x);
 write(x);

 89

 F-PRINT end
 F-BODY-ITER2 while not eofbit
 sum := sum + x;
 write(x);
 xread(f,x);
 F-BODY-ITER2 end
 F-BODY end
 write(sum);
F-SEQ end

 Finally, it is interesting to note what happens if we change the order of selection--
that is, we posit that the cumulative sum exceeds 100. In this case, we must deal with the
side effect of having already printed part of the file if it turns out that cumulative sum
does not exceed 100. To deal with this side effect, we will, instead of writing directly to
a printer, write to a print file as we did previously. Then, if only if the cumulative sum of
the entire file exceeds 100, we will print the print file. The structure text is shown below:

F-SEQ seq
 reset(f);
 xread(f,x);
 sum := 0;
 F-BODY posit {sum > 100}
 rewrite(g); {g is print file}
 F-BODY-ITER1 while not eofbit
 sum := sum + x;
 write(g,x);
 xread(f,x);
 F-BODY-ITER1 end
 quit F-BODY if sum <= 100;
 rewrite(g); {now get set to write the print file to the printer}
 xread(g, x);
 F-PRINT iter while not eofbit
 write(x);
 xread(g, x);
 F-PRINT end
 F-BODY end
 write(sum);
F-SEQ end

Note that we have computed the sum correctly in the posit component--a positive side
effect. In fact, all of the work of the admit component has been done in the posit
component, and we can discard it entirely.

Exercises

 90

(i) The data structure given for the multiple read-ahead rule is inefficient in that it
requires that (n-1) record areas be copied prior to reading into the current record area.
Design a more efficient data structure and the associated read procedure.

(ii) Write the program to produce the verified net movement report and unverified error
listing without using the go to statement. Is the structure intelligible (does it model the
problem structure)?

(iii) Design a program to print out the contents of a file if it contains more than 50
records.

(iv) A file consists of alternating sequences of integers. Each sequence begins with an
identifier containing a sequence number and the number of integers in the sequence. A
program is to be written to copy the sequences as a single sequence. The program should
terminate when the cumulative sum of all of the integers in sequences read so far exceeds
a parameter, n.

 91

7. Structure Clashes and Program Inversion

7.1 Structure Clashes

 The design method that has been presented in the preceding chapters works when
there is a correspondence between input and output data structures. What happens when
such correspondences don't exist, as in the following example?

 Consider the input file of the net movement problem in section 4.1.2.
The file consists of daily transactions sorted by part number; each part
number may have one or more transactions--either a receipt into the
warehouse or an order out of the warehouse. Each transaction contains a
transaction code, a part-identifier, and a quantity received or ordered. A
program is to be written that prints a line for each part number showing
the net daily movement for that part number into or out of the warehouse.
Suppose the input file is blocked, with each block containing a record
count followed by a number of records.

The system diagram is shown below:

Input
file

C-Input;
P- Report

Daily Net
Movement
Report

The structure of the input and output files is shown below:

Report

Title line Report body End line

 Report line
*

 Report file

Daily
transaction

file

Block
*

Record count Block body

*

Input file

Transaction
record

 92

 The report file structure is the same as was shown previously in section 4.1.2;
however, the input file structure shows the arrangement of records into blocks, but not
the arrangement of records into groups--we cannot depict the structure of blocks and
groups in a single diagram.

 A report line does not correspond to a block. The input and output structures are
thus not compatible. The essence of our difficulty is that the program must have an
operation that is executed once per block and an operation that is executed once per
group, so there must be both a block component and a group component; but we cannot
have a single program structure with process block and process group components. We
have a boundary clash--the boundaries of blocks are not synchronized with the
boundaries of groups.

 The solution is to decompose the program into two simple programs, as shown below:

Daily Net
Movement
Report

Input
file PA

Inter-
mediate

file
PB

Program PA consumes the input file of blocks of records and produces an unblocked file
of transactions. Program PB consumes the groups of unblocked transaction records and
produces the required report.

 The input, intermediate and report files, together with their correspondences, are
shown below:

Daily
transaction

file

Block
 *

Record
count

Block
body

*

Daily
transaction

file

Transaction
record

Transaction
record

Input file Intermediate Intermediate Report file

 *

Daily
transaction

file

 *

 *
Transaction

record

 Part group

Daily net
movement

report

 Title line
Report
body End line

Total line
 *

Program PA Program PB

 file file

 93

Programs PA and PB can both be written using JSP: the input and output files of PA
have correspondence at the top and record levels; a net movement total line in the report
produced by PB corresponds to a set of transaction records corresponding to a part group
in the input file. The structure text for PA and PB is shown below:

PA seq
 reset(infile);
 xread(infile, block);
 rewrite(outfile);
 PA-BLOCK iter <while not eofbit>
 j := 1;
 PA-DEBLOCK iter
 <while not (j>reccnt)>
 outrec.itemno := inrec.itemno[j];
 outrec.transcode := inrec.transcode[j];
 outrec.qty := inrec.qty[j];
 write(outfile, outrec);
 j := j + 1;
 PA-DEBLOCK end
 xread(infile,block);
 PA-BLOCK end
 close(infile);
 close(outfile);
PA end

PB seq
 reset(infile);
 xread(infile, rec);
 writeln(' Daily Net Movement Summary ');
 writeln;
 PB-REPORTBODY iter <while not eofbit>
 groupid := rec.itemno;
 netqty := 0;
 PB-GROUP iter <while not eofbit
 and (groupid = rec.itemno)>
 netqty := netqty + rec.qty;
 xread(infile, rec);
 PB-GROUP end
 writeln(' ', groupid, ' ', n etqty);
 PB-REPORTBODY end
 close(infile);
PB end

 Decomposition of a complex program into two or more simple programs has the
following advantage: The programs we obtain are distinct. A serial file forms a
boundary between any pair of programs. We don't have to think "dynamically". For
example, we don't need to ask, "What if a group extends over several blocks?" or "What
if a group has no data records?" We know our programs are correct, because we can think
in terms of static data structures. Simple programs are a satisfactory high-level design
component--they are bigger than the control structures of structured programming; at the
same time, they have more precise criteria than modules.

 Our solution is inefficient, however. By introducing an intermediate file, we have
roughly doubled the execution time (in comparison with a program that produced a report
without an intermediate file). We will learn a little later how to optimize our design by a
simple program transformation, program inversion.

 The "boundary" clash in this example is one type of structure clash. Another type
of structure clash appears in the following example:

 Let us suppose that our input file is incompletely sorted by part
number. Total lines for each part group on the report may be in any order.

 The input file has the following structure:

 94

Daily
transaction

file

 *
Transaction

The input consists of groups, each of which has the from shown below:

Part group

Transaction
*

 Since the input file is not sorted completely by part number, we cannot show the
group structure and the input file structure on one diagram. Our input file is an
interleaving of part groups. To resolve this "interleaving" clash, we split the input file
into part groups as shown below:

Psplit
 Input
 file

PG1

PGn

PG1

PGn

 Output Preport
Daily
Net

Movement
Report

 Each of the intermediate files, PG1, PG2, ...,PGn has the structure of a part group.
The programs, PG1, PG2,..., PGn, that produce the Daily Net Movement Report each
read a part group file and produce the report, each program contributing one total line to
the report. The input and output data structures shown below for programs Psplit and
Preport show correspondences and no structure clash; hence, we have no difficulty
constructing the programs using the basic JSP design method:

 95

Input file

Transaction
record

*

Intermediate
file(s)

Part Group°

Transaction
record

*

Net Movement
Report

Report
title

Report
body

Part group
total line

*

<PG1...PGn>
End
line

7.2 Program Inversion

 In the previous section, we examined how to deal with structure clashes, that is
situations in which we cannot construct a program design because we don't find
compatibility between input and output file structures. We looked at two types of
structure clash, namely boundary clash and interleaving clash. We found that the
solution to the structure clash in both cases is to decompose the program into two (or
more) simple programs that can be designed using the steps of JSP. We noted that this
method of decomposition has several advantages:

 (1) We are able to use JSP, and can be certain that we have produced well-
designed programs;
 (2) The serial file produced by the first program provides a simple yet well-
defined interface between the two programs.

 However, we noted that this solution by decomposition is inefficient. We would
like keep our design method, but be able to achieve an optimized solution.

 Program inversion achieves this objective, that is, we design simple programs
using JSP and then invert one (or more) programs to optimize the design. Moreover, we
gain this efficiency without introducing errors because program inversion is a well-
defined (algorithmic) program transformation.

 Let us reconsider the boundary clash problem in general terms. The system
diagram is given in the following diagram:

A P X

(A and X are serial data streams)

 96

 The structure of the serial files A and X is shown in the following diagram:

*

*

*

*

A

B

C Z

Y

X X produced from A

No correspondence
 between Y and B

Z produced from C

 There is a 1-to-1 correspondence at the top level and at the lowest level, but there
exists an intermediate level where no such correspondence exists.

 The resolution of the structure clash is effected by decomposing the program P
into two programs, PA and PB as shown below:

A PA I PB X

 The data structures of the serial input file, A, the intermediate file, I, and the
output file, X are shown below:

* *

*

*

*

A

B

C Z

Y

X

C

I

 There is no structure clash between A and I, so the structure of PA can be
constructed without difficulty; the same is true of I and X and PB. Whereas in general,
the description of a file as an iteration of records is rarely sufficient--though always true--
in designing a program, in the case of resolving a structure clash, this description is

 97

invaluable. The intermediate file, I, contains the largest component common to both A
and X--an idea analogous to the "greatest common divisor" of two integers.

 What is important in the resolution of the structure clash is a decomposition that
enables us to concentrate on a correct analysis of PA and PB. The processing for the
system diagram

IPA PB

can be accomplished in a number of ways:

 (1) Batch processing: PA produces the serial data stream, I, which is then
processed by program PB.
 Special case: If I can be stored in memory, there is no need for an external data
stream, I, and P can be accomplished by executing in order subroutines PA and PB.

 (2) Parallel processing: It would be more efficient if P2 processes each record of
I as soon as it is created by PA instead of waiting until all of I has been produced. We
can arrange PA and PB to be cooperating programs or coroutines. PA produces a record
in a buffer and transfers control to PB which consumes (processes) the record and then
transfers control back to PA again. The cooperation between PA and PB is depicted
below:

call PA
get

PA:

put
call PB

put
call PB

put
call PB

PB

get
(process)

call PA
get

(process)

(process)

 Alternatively, PA and PB can be written as independent tasks under control of a
multi-programming task supervisor which manages the alternating suspend and resume
between the two tasks.

 (3) Quasi-parallel processing: program inversion

 98

 Multi-programming is expensive in system resources. We can achieve a solution
of a structure clash more cheaply: instead of running PA and PB in parallel, we can
convert one so that it runs as a subroutine of the other. We call the conversion process,
program inversion. The system diagram:

 IA PA PB X

is rewritten as:

A PA

X

PA produces a record and invokes
the subroutine PBI which uses it
to produce X.

PBI

We say that PBI is inverted with
respect to its input file.

or as:

PB produces X, invoking the
subroutine PAI to obtain the
next record.

PAI

PB

A

X

We say that PAI is inverted with
respect to its output file.

 Subroutines or procedures in FORTRAN, COBOL and Pascal (among others) do
not store their return address in the calling program, and so the calling program does not
know where to resume the subroutine. If a multiple ENTRY facility is used, the
program, PA, is no longer independent of PB, since it must know which ENTRY point to
invoke. We wish to design PA and PB independently of each other so that the structure
of each is based on the data structure representation of its own problem
environment.

 Program inversion is a purely mechanical transformation of the independent
programs, PA and PB, into a main program and subroutine, where the subroutine has a
single ENTRY point and stores its return address within itself so that it is resumable.

 Consider the boundary clash example again:

 IA PA PB X

 99

 We can convert the program PA into a procedure PAI, which has the
characteristics of an input procedure for I. Successive calls to PAI will 'open I', 'read I'
(iteratively), and 'close I'. PAI passes the next record to PB and notifies PB when an end
of file has been reached. (Alternatively, we could convert PB into a procedure PBI,
which has the characteristics of an output procedure for I.) PA and PAI are identical
programs. PAI is a resumable or variable-state procedure, that is, it performs some
operations, suspends its execution (passes control back to PB), and when called again,
resumes at the point where it left off. PAI must keep track of its state, and does so with a
state vector (or activation record) that holds the values of any variables together with a
text pointer to the next instruction in its text to be executed.

 In our example, we know that the stream of operations that
PAI must perform is: open, read, read,..., close.

 Let us let PA represent our program to deblock our blocked warehouse
transactions and PB the program to write our daily net movement summary report. Here
is the structure text for PA followed by its transformation into the variable state
subroutine, PAI:

PA seq
 reset(infile);
 xread(infile, block);
 rewrite(outfile);
 PA-BLOCK iter <while not eofbit>
 j := 1;
 PA-DEBLOCK iter
 <while not (j >block.reccnt)>
 outrec.itemno := inrec.itemno[j];
 outrec.transcode := inrec.transcode[j];
 outrec.qty := inrec.qty[j];
 write(outfile, outrec);
 j := j + 1;
 PA-DEBLOCK end
 xread(infile,block);
 PA-BLOCK end
 close(infile);
 close(outfile);
PA end

PAI seq
 GOTO (5, 15) DEPENDING ON qs
5: reset(infile);
 xread(infile, block);
 PA-BLOCK iter <while not eofbit>
 j := 1;
15: PA-DEBLOCK iter
 <while not (j>block.recnt)>
 outrec.itemno := inrec.itemno[j];
 outrec.transcode:= inrec.transcode[j];
 outrec.qty := inrec.qty[j];
 j := j + 1;
 qs := qs + 1;
 return
 PA-DEBLOCK end
 xread(infile,block);
 PA-BLOCK end
 close(infile);
 return
 PAI end

 The following changes transform PA to PAI:
 (1) A GOTO <L1, L2, ..., Ln> DEPENDING ON qs is coded as the first
statement of the text of PAI.
 After each write statement in PA's text, the position in the text must be
remembered explicitly. On the next invocation of PAI, the program must resume at that
point. Since a procedure starts each invocation at the beginning of its text, there must be

 100

a conditional jump from the beginning of the program text to the correct resume point.
We have used the GOTO <L1, L2, ...> DEPENDING ON qs statement to express the
resume mechanism. Here, L1, L2, ... , Ln represent label statements in PAI, and qs
represents successive states of PAI. The variable, qs is assumed to be initialized to 0.
The local variables of PAI together with a pointer to the point of resumption in the
program text is called the state vector of PAI.
 (2) The rewrite(outfile) in PA is deleted from PAI
 (3) Instead of the write (outfile, outrec) statement in PA, PAI passes the next
record to PB, increments qs to resume at the proper point of its text, and returns control
to PB.
 (4) When the end of file is reached, eofbit is set to true, and PAI passes it to PB.
 (5) The close(outfile) statement in PA is deleted from PAI.

 PA and PAI have the same structure. The transformation of the program PA to
the variable state procedure PAI is straightforward, and can be accomplished
algorithmically.
Because we have inverted the program PA with respect to the file I, we have optimized
our solution--the file I no longer exists.

 Here is the original program PB followed by the transformed program PB':

PB seq
 reset(infile);
 xread(infile, rec);
 writeln(' Daily Net Movement Summary ');
 writeln;
 PB-REPORTBODY iter <while not eofbit>
 groupid := rec.itemno;
 netqty := 0;
 PB-GROUP iter <while not eofbit
 and (groupid = rec.itemno)>
 netqty := netqty + rec.qty;
 xread(infile, rec);
 PB-GROUP end
 writeln(' ', groupid, ' ', n etqty);
 PB-REPORTBODY end
 close(infile);
PB end

PB' seq
 PAI
 writeln(' Daily Net Movement Summary ');
 writeln;
 PB-REPORTBODY iter <while not eofbit>
 groupid := rec.itemno;
 netqty := 0;
 PB-GROUP iter <while not eofbit
 and (groupid = rec.itemno)>
 netqty := netqty + rec.qty;
 PAI
 PB-GROUP end
 writeln(' ', groupid, ' ', n etqty);
 PB-REPORTBODY end
PB end

 The following changes transform PB to PB':
 (1) The initial reset(infile) and xread(infile, rec) in PB are replaced by an initial
invocation of the procedure PAI;
 (2) The xread statement in PB-GROUPBODY is replaced by invoking PAI;
 (3) The close(infile) statement in PB is deleted in PAI.

 Recall the following system diagram for the interleaving problem:

 101

Psplit
 Input
 file

PG1

PGn

PG1

PGn

 Output Preport
Daily
Net

Movement
Report

 We created a multiplicity of files, PG1...PGn. We can rid of these by inverting
each of the programs PG1...PGn into procedures PGp1...PGpn. We still have a
multiplicity of procedures. We observe that the procedures have identical text--they are
the same--what differs is only their state vectors. If we separate the procedure text from
the state vectors, we obtain just one procedure, PGp, and must simply provide a way for
the procedure to access the correct state vector (we can store the state vector for group i
as the
i th record in a direct access method, or as the i th row of an array, for example).
Separation of the text of a program from its state vector is another implementation
transformation in JSP that optimizes design without introducing design errors.

7.3 Implementation of Inversion

 In the Pascal implementation of inversion, we use the case construction instead of
the construct introduced in our structure text, namely,

GOTO(l1,l2,...) DEPENDING ON QS

to express the variable states of PAI. The case statement equivalent is shown below:

case qs of
l1: <statement-1>;
 ...
ln: <statement-n>;
end;

 The case statement is, of course, a general selection statement, and is thus not very
satisfactory since what we have in PAI is not selection, but a strictly determined
sequence of states: qs is 0 first, then qs is 1, etc.

 Since procedures in Pascal do not remember their state, the state vector of PAI
must either be global variables, parameters of PAI, or the entire state vector needs to be
saved when PAI is suspended and restored when PAI is resumed. Finally, the state
variable, qs, must be initialized at the start.

 102

 In order to implement the structure text of PAI in Pascal, we will have to rid
ourselves of its nested block structure, since we resume control at a point within an
iteration (which is itself contained in another iteration) and Pascal does not allow us to
jump into the middle of an iteration. In general, 'nest-free' or flat code must be generated
for control structures as shown below:

Structure text Nest-free Pascal

Sequence
A seq begin
 do B; B;
A end end

Selection
A sel <cond-1> if not <cond-1> then
 do B; goto l1;
A alt <cond-2> B;

 do C; goto l2;
A end l1: if not <cond-2> then
 goto l2;
 C;
 l2: {end}
Iteration
A iter while <cond> l1: if not <cond> then
 do B; goto l2;
A end B;

 goto l1;
 l2: {end}
Backtracking (selection)
A posit l1: {posit}
 do B; B;
A quit <cond> if <cond> then
 do C; goto l2;
 {quit posit, go admit}
A admit C;
 do D; goto l3;
A end l2: {admit}
 D;

 l3: {end}

 103

Backtracking (iteration)
A iter l1: {iter}
 do B; B;
A quit <cond> if <cond> then
 do C; goto l2;
A end C;
 goto l1;
 l2: {end}

 Jackson and his co-workers developed specialized compiler pre-processors to
generate nest-free code for both COBOL and PL/I. There is no such pre-processor for
Pascal, and we will therefore not pursue implementation of inversion in Pascal any
further. Also, recent developments in programming languages permit direct modeling of
coroutines9.

7.4 Significance of Program Inversion

 We have looked at program inversion as a method for optimizing simple
programs connected by serial data streams as in the system diagram below:

 I P O

This schema of a simple program would seem to have limited applicability to batch data
processing systems.

 However, the deeper significance of program inversion is that many situations
appearing in their dynamic, piecemeal executable form can be recast in their underlying
serial form as a simple program. Any resumable program--one that is alternately
activated and suspended--is an example of inversion. We can ask 'What is the underlying
seriality of its input and output?' Once we discover the underlying seriality of the
problem, we can recast the problem in serial form, and design a simple program using
JSP. Then, confident of the correctness of our design, we can optimize the design using
inversion. Since the inversion preserves program correctness--it is an algorithmic
transformation--we can be confident about the design of the inverted (resumable)
program. The recognition of resumable processes as being essentially the inversion of a
serial process, together with the correctness-preserving property of the inversion
transformation of a simple program, allow us to extend the range of JSP to many
situations that at first glance do not appear to be amenable to it. Some examples are the

9 C has a number of features that make implementation of inversion easier: for example, static variables, a
quit statement, and branching into loop constructs.
Modula-2 and ADA model concurrency. Some OOP languages such as POOL model concurrency.
SmallTalk has facilities to model parallel processing and process scheduling.

 104

design of interrupt handlers, conversation dialogues, and on-line transaction monitors
among others.

 In each of these cases, an ongoing process appears dynamically in its executable
form. An interrupt handler is activated and processes an interrupt or a dialogue
procedure responds to a terminal input, for example. In each case, we approach the
problem by viewing it statically, that is, by taking a 'bird's eye' view of the entire
temporal process of which we are seeing a snapshot. We view the entire stream of
interrupts or terminal inputs in the course of a day; then, having thus recast the problem
into its underlying serial structure, we design a simple program using JSP; and, once the
program has been designed, we can invert the program into a resumable procedure,
confident that its design is also correct since the inversion transformation preserves
correctness.

 So, the significance of program inversion is that it extends the applicability of
JSP into new areas. Let us examine some of these areas--the design of variable state
procedures; networks; and data processing systems.

 (1) We can use JSP to design variable state procedures.

 First we specify the main program equivalent to the procedure; then we design the
main program; finally, we invert it.

 Here are some examples: 10

(a) Q requires a procedure P that returns the first prime on the first invocation and the
next prime on each of the next 999 invocations.

 The equivalent main program, P, creates a file of 1000 prime numbers that is read by
the program Q, as shown in the system diagram below:

P Q F

P is inverted with respect to F to create a variable state subroutine invoked by Q.

(b) Q requires a procedure P that scans a database and returns for each invocation, all
database customer segments that satisfy condition C.

10 Examples (a) and (b) are from "Program Inversion and Its Consequences" in JSP&JSD: The Jackson
Approach to Software Development" by J. R. Cameron. 1983 (1st edition); example (c), (d) and (e) are
adapted from "Constructive Methods of Program Design" by M. A. Jackson in the same book, p. 81.

 105

 The equivalent main program, P, writes a file, F, of all customer segments satisfying
the criteria C, and the program Q processes this file as shown in the system diagram
below:

P Q F

A variable state subroutine can be created by inverting P with respect to F.

(c) Q requires a procedure P that will modify the output record of a sort program before
it is written to the output file.

 We may view the system diagram of the sort as below:

SortInput P Modified
 output

Output

 The equivalent main program, P, reads the sorted output file and modifies each
record, creating a modified output file.

 Here, P is inverted with respect to both its input and output files. We say, in this
case, that P is doubly inverted and depict the situation with diagram below:

SortInput

P

Modified
output

The triple lines (instead of the double lines indicating inversion with respect to one file)
indicate inversion with respect to two files.

(d) Interactive conversational programs

 To design a procedure to output a response to a terminal input, first design a
program to process the entire stream of terminal inputs producing a stream of responses
as shown in the system diagram below:

 106

input
stream

Terminal
Response

stream

 Conversational
 program

 Inverting the resulting program with respect to the terminal input stream gives the
desired procedure which we may imagine runs under control of a teleprocessing monitor
(TM) as shown below:

input
stream

Terminal
Response

stream

 Conversational
 program

 TP Monitor

(e) Interrupt handler

 To design a procedure to respond to a given interrupt, first design an interrupt
handler that reads an input stream of interrupts and outputs a stream of responses; then
invert the program with respect to its input stream to give the desired procedure.

 (2) Implementation of a hierarchical network

 Problems are sometimes implemented as a network of programs connected by
serial data streams. The network can be simplified through inversion as a hierarchy of
subroutines.

 Consider the linear network below (suggestive of 'pipelining'):

------->S1 P1 S2 SnPn-1Sn-1

Each of the programs, P2,...,Pn-1 can be inverted with respect to its input file, producing
the inverted system diagram shown below:

S1 P1 P2 -------

Pn-1 Sn

 The hierarchical network shown below:

 107

F1 F2

F3

F4

F5

F6P1

P2

P3

P4 F7

can be inverted, producing:

F1 P1

F3

P2

P4 F7

F6P3

(3) Design of data processing systems

 In most data processing systems, entities have a long life--often years or decades.
Viewed dynamically, entities--such as a bank customer who makes deposits or
withdrawals--are active only briefly; most of the time, the bank customer is engaged in
other activities having nothing to do with banking. Let us consider a simple banking
system where customers may open an account and subsequently make any number of
withdrawals or deposits. The structure diagram for any customer is:

Customer

Open
Account

Account-Body

*

° °Deposit Withdrawal

Customer
transaction

 108

When active, a bank customer's state vector must be activated and the program text for
that customer resumed where it left off previously.

 Program inversion allows us to exploit long-running processes to the full. We
design the program text of a bank customer based on the structure of its input stream of
deposits and withdrawals which may be created over a period of many years as shown
below:

Customer
inputs

Customer
program

 Then we invert the program with respect to its input stream, and perhaps run the
resulting procedure under control of a transaction processing monitor for example. In the
diagram below, a customer process is activated briefly only when necessary; otherwise, it
remains suspended.

Customer
inputs

Customer
procedure

Transaction
Monitor

 An information system may be viewed as a network of processes. Each process
describes an independent entity in the real world model and is represented by a program.
By arranging entities of the same type (e.g., the customers in a banking system that
provides customer checking accounts) into sets, we can arrange the corresponding
individual programs into an equivalence class: the program text is the same for all
entities (customers) in the set; only the state vector--the local variables of the process
together with its text pointer--of individual entities (customers) differs. In the diagram
below, we show an input stream of transactions for all customers.

Transaction
stream

Customer
procedure

Transaction
Monitor

Customer
SVs

 109

The transaction monitor activates the inverted customer program, whose program text is
the same for all customers. The program looks up the state vector of the customer-id
which is stored on disk (together with the state vectors of all customers) and updates it.
The customer program then returns control to the transaction monitor and is suspended.

 We will be focusing our attention on the design of information systems in Part 2.

Exercises:
(i) Read a sequence of 80-character records and print the characters on a line printer
125 characters per line. Every input record should have a space appended, and the last
line should be filled with blanks if necessary. (from C. A. R. Hoare, "Communicating
Sequential Processes", CACM V21 N8)
(ii) Implement the program PB and the (inverted program) procedure PAI in Pascal.
(iii) Implement PB with respect to I, creating the procedure PBI. Give the structure
text of PA and PBI and implement them in Pascal.

 110

8. Optimization

8.1 Attitude towards optimization

 The word 'optimize' means 'to make the best' (from the Latin optimum - 'best').
When we use the term optimization to describe making programs as small and/or as fast
as possible, it is ill-chosen because in optimizing we may actually make a program bad in
other ways--make it less intelligible, harder to maintain, and more prone to error.

 Our attitude towards optimization is summarized in the following two rules:

 Rule 1: Don't do it

 This rule says that program optimization often isn't necessary. We need a
quantitative justification for it. It may not matter whether or not a program uses 10% less
memory or runs 5% faster. Optimizing memory isn't important if we have plenty of
memory available; a 5% savings in time surely doesn't warrant the time and expense of
optimization if we are only running a program a few times.

 Rule 2: Don't do it yet

 This rule states that if optimization is necessary, then before optimizing, we
should begin with an unoptimized design that reflects the problem structure. Only with
an unoptimized design can we fully understand the program; and without such an
understanding, we are likely to introduce logical errors when we optimize.

8.2 Types of optimization

 We can distinguish between three kinds of optimization. We will focus only on
the third type, optimization by program transformation, because this type of optimization
can distort the original, unoptimized program structure that directly reflects the problem
structure.

1. Optimization by tuning

 Here we refer to strategies such as the following:
 - adjusting a file's block size to effect the best compromise between available
space and the number of data transfer operations;
 - choosing data types to effect the best compromise between file storage space
and program processing time for data conversion;
 - adjusting queue sizes to obtain the best compromise between space
requirements and device utilization;
 - adjusting the number of buffers to obtain the best compromise between memory
use and database processing efficiency;
 - program segmentation to optimize memory via overlays

 111

 With the possible exception of the last example above, none of these
optimizations affects program structure.

2. Optimization by algorithm

 Sometimes we can improve the performance of an algorithm by refining the
algorithm itself. For example, to sort a file of n items into ascending sequence using the
'bubble' sort algorithm, we make n-1 passes of the file. In each pass, we 'bubble' one item
as far to the right as possible by exchanging each successive item with its right neighbor
if it compares greater. For example, if our n items are the integers below:

 10 4 5 6 3 8

then, the arrangements below show the result of exchanging after each pass:

 n = 6 pass
 4 5 6 3 8 10 1
 4 5 3 6 8 10 2
 4 3 5 6 8 10 3
 3 4 5 6 8 10 4
 3 4 5 6 8 10 5

We can optimize the algorithm in several ways:
 - stop the sort if during a pass, no exchanges were made, instead of making (n-1)
passes; the 5th pass above would be unnecessary;
 - reduce the number of items involved during each pass: if in the nth pass, the
leftmost pair swapped was sn and sn+1, then the (n+1) pass may begin with the sn-1 and
sn item; in the 3rd pass, we could start by comparing the 2nd and 3rd items, since in the
previous pass, the 1st exchange occurred between the 3rd and 4th items

 Other optimization of the 'bubble' sort are possible; in each case, the changes in
program structure reflect a new, optimized algorithm.

3. Optimization by program transformation

 Here we are concerned with optimizations that could be performed by a good
optimizing compiler on a well-designed program. They include eliminating redundant
assignment operations; optimizing common subexpressions; loop optimization; etc.

 If an optimizing compiler is used to effect program optimizations such as those
mentioned above, the simplicity and clarity of the original, unoptimized program remains
the basis of future maintenance activity. There is no cost to the optimization except the
extra time that an optimizing compiler may take.

 Often, however, optimization by program transformation is carried out by the
designer, and we run the risk of increasing program maintenance costs through loss of the

 112

initial clarity and simplicity of design. Let us consider a few such optimizing program
transformations.

(a) Ordering of condition tests

 Sometimes, we can achieve reduction in execution speed by carefully ordering
condition tests in a selection as in the following example:

A person's marital status in the person record of a population Census file
has the following codes and estimated frequencies:
divorced - 'd' (4%), widowed - 'w' (10%), married - 'm' (30%), single - 's'
(55%), other - 'o' (1%)
We wish to compute the frequency distribution by marital status for the
categories single, ever-married (married+divorced+widowed) and other.

 The structure diagram for the selection is shown below:

Update
ms table

ever-married single all other° ° °
<'m' or 'w' or 'd'> <'s'> <'o'>

In a structure diagram, recall that the ordering of the selection is unspecified. We might
code the selection as follows:

type
 maritalstatus = ('d', 'w', 'm', 's', 'o');
var
 ms: maritalstatus;
 ethtab: array[1..3] of integer;

 case ms of
's': ethtab[1] := ethtab[1] + 1;
'm', 'w', 'd': ethtab[2] := ethtab[2] + 1;
'o': ethtab[3] := ethtab[3] + 1;
 end

 Without knowing the details of how the case statement is implemented, we cannot
be certain that its use as shown above will optimize the selection processing.

 The selection can be ordered in order of decreasing frequency (with the greatest
frequency first) to minimize the number of condition tests performed as shown below:

 113

/* selection is optimized to minimize number of condition tests made based on */
/* estimated frequencies of marital status codes */
if ms = 's' then
 ethtab[1] := ethtab[1] + 1
 else if ms = 'm' then
 ethtab[2] := ethtab[2] + 1
 else if ms = 'w' then
 ethtab[2] := ethtab[2] + 1
 else if ms = 'd' then
 ethtab[2] := ethtab[2] + 1
 else ethtab[3] := ethtab[3] + 1;

 There is some loss in intelligibility, unless comments are included to indicate that
the selection has been optimized as shown.

 The remaining three kinds of program transformation considered below optimize
by reducing program length:

(b) Simplification of data structure

 Simplification of the data structures on which the program structure is based must
be done with care since an error or unwise optimization could undermine the entire
program structure.

 Consider the following description of a record:

A variable-length record (maximum length = 1000) begins with some
number of spaces followed by words, each of which is separated by one or
more spaces, and is terminated by a distinct end-of-record code. Each
word has at least one character and consists only of the upper and lower
case letters a-z, and single and double quotes.

 The record structure is depicted below:

 114

Record

Spaces

Space
*

Word
groups

Word Spaces

Word

character Word body

Word
character

*

Space
*

End-of-record
character

Word
group

*

 We can, in fact, simplify the data structure considerably, thereby reducing the
number of components and the program's length:

Record

Word
groups

Word Space

Word
character

*

End-of-record
character

Word
group

*

° °

 We have eliminated the initial iteration of spaces; the iteration of spaces
following a word; and a word's first character. We can confidently process records, as

 115

long as in the specification, the delimiters between words are limited to spaces and the
number of spaces at the beginning and between words is unimportant.

(c) Common action tails

 Consider the following problem:

 A bank customer may make a deposit , withdrawal or transfer. In
the case of a deposit, the amount is added to the account's balance and
then a record of the account activity is recorded by executing procedures y
and z; in the case of a withdrawal, the amount is subtracted from the
customer balance, and a record of the account activity is recorded by
executing procedures y and z; in the case of a transfer, the transaction
amount is subtracted from the first account number and added to the
second account number on the transaction; following this, a record of
account activity is recorded by executing procedures y and z.

 Consider the following structure diagram:

Process
transaction

Process
deposit

Process
withdrawal

Process
transfer

° ° °

bal :=
bal+amt do Y do Z do Y do Z do Y

bal1 :=
bal1-amt

bal :=
bal-amt

bal2 :=
bal2+amt do Z

 We notice that for each transaction type, we execute procedures Y and Z
subsequent to updating the customer accounts involved. We could optimize as shown in
the following structure text:

PROCESS-TRANS sel
 bal := bal + amt;
1: do Y;
 do Z;
PROCESS-TRANS alt
 bal := bal - amt;
 goto 1; /* common action tail */
PROCESS-TRANS alt
 bal1 := bal1 - amt;
 bal2 := bal2 + amt;
 goto 1; /* common action tail */
PROCESS-TRANS end

 116

 The use of the goto statement is deliberate--the original selection structure is
preserved. It would be less intelligible to restructure the selection based on the
optimization as shown below:

PROCESS-TRANS seq
 PROCESS-TRANS-SEL sel
 bal := bal + amt;
 PROCESS-TRANS-SEL alt
 bal := bal - amt;
 PROCESS-TRANS-SEL alt
 bal1 := bal1 - amt;
 bal2 := bal2 + amt;
 PROCESS-TRANS-SEL end
 do x;
 do y;
PROCESS-TRANS end

If a change is made in the processing of any of the three transaction types, we would
likely have to rewrite the component.

(d) Generalization

 Another way to handle two or more identical lines of code that occur in more
than one place in a program is to generalize by making the identical lines of code into a
procedure. Thus, in the common action tail example above, we could make the
procedure shown below:

 procedure otherprocessing;
 begin
 do x;
 do y;
 end;

 The component to process the transactions is now:

PROCESS-TRANS sel
 bal := bal + amt;
 do otherprocessing;
PROCESS-TRANS alt
 bal := bal - amt;
 do otherprocessing;
PROCESS-TRANS alt
 bal1 := bal1 - amt;
 bal2 := bal2 + amt;

 117

 do otherprocessing;
PROCESS-TRANS end

 Optimization by generalization should be sharply contrasted with the
generalization that occurs in bottom-up design, where we build a more abstract machine
in order to include operations needed by the problem environment (see section 2.4).

 118

9. Concluding remarks on JSP:

9.1 JSP and the Design of Programming Languages

 We have seen a number of cases where we have had to invent structure text
constructs to implement the design methods of JSP because the control structures were
not available in Pascal. JSP suggests that programming languages should include
features that directly implement the JSP design method.

 Let us review these features briefly:

 (1) We need a posit and admit control structure and a quit statement to express
backtracking

 Although we used a goto statement to implement backtracking, this was not an
unrestricted goto statement of the type that Dijkstra and others have warned against; it is
a carefully limited goto that is semantically equivalent to the admit structure text.

 (2) We need a coroutine facility that permits one process to be suspended while
control is passed to the appropriate point of the invoking process, and that permits the
suspended process to be invoked again and resumed immediately following the point at
which it last relinquished control.

 Since such a coroutine facility is not available in many languages, including
Pascal, we have used a variable state procedure to model the suspend-and -resume
mechanism. As was mentioned in section 7.3, for Pascal just as for COBOL and PL/1,
we need a special-purpose compiler that generates nest-free Pascal code in order to
resume at a point within a nested block, such as an iteration. Although the
implementation of nest-free code generators is part of JSP implementation, we will not
discuss nest-free code further beyond reiterating the following points:

 - Special compilers can be written to produce nest-free code to permit
implementation of variable state subroutines;

 - The goto statements generated in nest-free code are not 'harmful' since they are
carefully controlled and semantically equivalent to the nested block structure that they
implement in unnested form.

 - The essence of the 'suspend-and-resume' mechanism is that a procedure
remember its state vector (local variables and text pointer). Objects in OOP languages
do remember their state, or at least their local variables. OOP languages that support
concurrent processes directly remember their text pointer as well; in other OOP
languages, the text pointer must be modeled by a local variable, as described in the
chapter on program inversion.

9.2 Simple programs and serial data streams

 119

 JSP provides a method for designing simple programs. A simple program, shown
below, has the following characteristics:

I O P

 (a) a fixed initial state
 (b) program inputs and outputs are serial files
 (c) input and output files have an explicit structure
 (d) input structures define the domain of a program; output structures define the range
of a program
 (e) input and output data structures are compatible in the sense that they can be
combined into a single program structure

 We have seen that more complex problems can often be decomposed into simple
programs, which can be designed using JSP and optimized by inverting one or more
programs with respect to its (their) data file(s).

 Jackson proposes that the simple program--rather than the module of modular
programming or the control structure of structured programming--provides a reliable,
high-level design component for software engineering. In particular, serial data streams
form a simple and effective interface--a barrier that enforces a design discipline--between
programs.

 By a serial data stream we do not mean a sequential data set in which 'next' is
based on the value of a record identifier. Instead, the idea of seriality is that of a physical
seriality of data produced by some process.

 Examples of serial data streams include:

 - a stream of messages input from a terminal (they reflect the temporal sequence
of a user's responses in a conversational dialogue)
 - the sequence of records in a physically serial file (some process created the
physical ordering of the file)
 - a stream of data base segments accessed in a sequence of database calls (the
stream reflects the process of accessing a specified set of data)
 - a sequence of invocations of a procedure (the sequence reflects the process of
executing the invoking program)
 - a sequence of characters printed out in a memory dump (the sequence reflects
the program's access of memory locations)

 When we come to view system development (JSD) in the next part of the text, we
will see that a system can be specified as a network of entity model processes, with each

 120

model process described (and implemented) by a simple program that reads a serial data
stream connecting it with the real world.

 Thus, the idea of a simple program in JSP is very close to the idea in the object-
oriented design paradigm of objects communicating with each other by passing
messages. Over time, the sequence of messages read by an object constitutes precisely a
serial data stream.

 121

10. Jackson System Development (JSD): An Overview

10.1 A Simple Example: Student Loan System

 Program inversion extends the range of JSP applications into various areas such
as coroutine design, implementing a system of simple programs as a hierarchy of
subroutines, on-line programming and systems design. We will now look at JSD, a
method for design information systems.

 Consider the following description of a student loan system:11

A university gives loans to students. Before getting a loan, there is an
evaluation process after which agreement is always reached. A TE
transaction records each step of the evaluation process, and a TA
transaction records the overall loan agreement. A student can take any
number of loans, but only one can be active at any time. Each loan is
initiated by a TI transaction. Then, the student repays the loan with a
series of repayments. Each repayment transaction is recorded by a TR
transaction. Finally, a loan is terminated by a TT transaction.

Two output functions are desired: (1) an inquiry function that prints out
the loan balance for any student, and (2) a repayment acknowledgment
sent to each student after payment is received by the university.

 The university loan office decides to implement the student loans on a single
processor. Inquiries should be processed as soon as they are received. However,
repayment acknowledgments need only be processed at the end of each day.

 Notice that each student who receives one or more loans generates a stream of
data over a long-period of time, perhaps many years. We can write a program to process
the whole data stream, if we can describe its structure, just as we can write a program to
process the data input by a user at a terminal. A key feature of many information systems
is that they consist of slow, long-running processes. JSD takes a bird's eye view --a
holistic view-- of such processes, describing the entire serial file even though it has not
yet been produced.

10.2 Modeling Phase

 JSD consists of three main phases: the modeling phase; the network phase; and
the implementation phase. In this section, we will look at the modeling phase.

 The modeling phase consists of three steps:

Step 1: Entity/action step

11 adapted from [Ja75], Ch. 11

 122

 The first step in modeling a real-world system, is to decide on what entities are
relevant in the system. An entity is any object--a person or thing--that is important in the
system we are modeling. Looking at the actions that occur in the system helps us to
decide what entities are important. An action is always associated with an entity.

 Actions have the following characteristics:

 (1) An action takes place at a point in time

 The evaluation process, taken as a whole, is not an action, since it takes place
over a period of time and consists of individual subactions.

 (2) An action must take place in the real world outside of the system.

 The system action of issuing a 'loan repayment acknowledgment' is not an action,
since it is an action of the system. A loan repayment by the student is signified by a 'loan
repayment action', so one cannot suppose that a 'loan repayment acknowledgment'
somehow models a student's loan repayment in the real world.

 (3) An action is atomic, cannot be divided into subactions.

 The evaluation process, taken as a whole, is a composite action consisting of
some number of evaluation subactions. Each 'evaluate' subaction may be an action (of
bank or of student).

 Entities have the following characteristics:

 (1) An entity performs or suffers actions in time.

 A statistic, such as population of U.S. in 1980 isn't an entity, nor is U.S. or the
year 1980 or any other object in a static database; A bank that issues loans over time or
a student who makes loan repayments over time are objects that perform time-ordered
actions.

 (2) An entity must exist in the real world, and not be a construct of a system that
models the real world

 Thus, a 'Loan repayment acknowledgment' issued by the system is not an entity.

 (3) An entity must be capable of being regarded as an individual; and, if there are
many entities of the same type, of being uniquely named.

 A student is a possible entity. There are many students (who belong to the entity
type or class, student), but each individual can be named.

 123

 We begin by making a list of candidate entities and actions. For each candidate
action, we decide what entity the action is associated with, and provide a list of attributes
associated with the action.

 Here are the candidate lists:

Entities/Description:

student
system
university
loan
student-loan

Actions/Attributes:

evaluate -action of university? (university performs the evaluation);
action
 of student? (student is evaluated) stud
 attributes: student-id, loan-no, date of evaluation, remarks
agree - action of university? (university agrees to loan); action of student
? (agrees to loan)
 attributes: student-id, loan-no, date of agreement, amount of loan,
interest rate, repayment period)
make loan - action of university
 attributes: student-id, loan-no, date of loan, loan amount, interest rate,
 repayment period
initiate - action of university? (university initiates loan); action of student?

 (student initiates loan); action of loan? (is initiated)
 attributes: student-id, date initiated
repay - action of loan? (loan is repaid);
 action of student? (student repays the loan);
 attributes: student-id, date of repayment, amount of repayment
terminate - action of loan (loan is terminated);
 attributes: student-id, date of termination, remarks

 In examining the actions, "make loan" seems vague with respect to its time. Is a
loan made when it is agreed to or when it is goes in effect? Probably the former and
effective date would be part of the agreement. Two actions, agree and initiate, are
specifically mentioned in the description, and "make loan" seems to encompass both, so
we eliminate "make loan" from our action list in favor of "agree" and "initiate".

 We eliminate "university" from the candidate list of entities, because the system
clearly is not about (is not interested in) the university, how it is administered, who the

 124

loan officers might be (except, perhaps, in relation to who authorized a loan to be made),
etc. We may say that "university" is outside the model boundary or OMB.

 Student, student-loan, and loan give us pause. Students are evaluated before they
receive a loan, and the system should model (record) the evaluation process. Hence
evaluation occurs before there is any student-loan. We decide to eliminate student-loan
in favor of student, where student has the meaning in the loan system of students
receiving one or more loans from the university. Loan is well-defined and could be
considered, with student, an entity. What actions does a loan perform or suffer over
time? Loans are agreed to, initiated, repaid and terminated. What actions do students
perform or suffer? Students are evaluated, agree to a loan, initiate the loan, repay the
loan and terminate the loan. The structure of a loan is included in the structure of
student, and there is no need at present to include loan as a second entity, although this
may be considered in later. We reject loan as an entity.

 After considerable discussion of these and other points with the university loan
office, we decide finally that we have only one entity of interest: student with actions
evaluate, agree, initiate, repay and terminate. Our final entity and action lists are as
follows:

Entities/Description:

student

Actions/Attributes:

evaluate -action of student; student? (st
 attributes: student-id, loan-no, date of evaluation, remarks
agree - action of student
 attributes: student-id, loan-no, date of agreement, amount of loan,
interest rate, repayment period)
initiate - action of student
 attributes: student-id, date initiated
repay - action of student
 attributes: student-id, date of repayment, amount of repayment
terminate - action of student
 attributes: student-id, date of termination, remarks

Step 2: Entity structure step

 The behavior of an entity in the real-world is modeled in terms of the actions it
performs or suffers over time. The second step of JSD expresses the constraints in the
ordering of an entity’s actions with a structure diagram.

 The entity structure diagram for a student is shown below:

 125

student

agree

 initiate repay part terminate

evaluate

repay

*

*

 evaluate part loan part

loan *

 The exact meaning of this diagram is:
 * The first action suffered by a student is the evaluation part, which consists of zero
or more evaluate actions.
 * The next action of student is agree.
 * Next comes the loan part, which consists of zero or more loans.
 * Each loan is a sequence of initiate action, followed by an iteration of repay actions,
followed by a terminate action.

 Notice that the leaves of the tree are the atomic actions of the entity (analogous to
elementary actions in a program structure).

Step 3: Model process step

 In the last step of the modeling phase we create an executable model process for
each entity in the system. Each model process is described with a system diagram.

 Our information system models each real-world entity. We are not just
simulating entities artificially, using some statistical techniques for example; we are
modeling each entity precisely as it exists in the real world. Therefore, there must be a
connection between the entity in the real world and the entity model process in our
information system.

 Usually, the connection is by serial data stream, in which the real world entity
produces a message for each action performed (or suffered). For each student action in
the real world, a transaction records the action in the student loan information system.
Viewed over time, the set of messages recording student actions constitutes a serial data
stream.

 We can depict the serial data stream connection between student entity and the
student in the information system as shown below:

 126

 S STUDENT-0 STUDENT-1

EXTERNAL WORLD SYSTEM

 We use the suffix "-0" to the student entity to indicate the abstract student entity
in the real world, and the suffix "-1" to indicate the realization of this abstraction in our
information system.

 What is the structure of the serial data stream? The entity structure diagram
describes its structure. The entity model process for a student can be described by a
simple program that reads a serial data stream. We can use JSP to write the program text
for this process. It is shown below:

 STUDENT-1 seq
 read S;
 EVAL iter (while TE)
 process TE; read S
 EVAL end
 AGREE seq
 process TA; read S
 AGREE end
 LOAN-PART iter (forever)
 INIT seq
 process TI; read S
 INIT
 REPAY iter (while TR)
 process TR; read S
 REPAY end
 TERM seq
 process TT; read S
 TERM end
 LOAN-PART end
 STUDENT-1 end

 Although it is a slow-running system, our information system is a real-time
system. We collect information as it is furnished by the real-word process. Our entity
model process is synchronized with the actions of the real world entity. Recall that the
text pointer is part of the state vector of a model process's program text. If our text
pointer points to the repay component of a student's process text, then an 'E' (evaluate),
'A' (agree) or 'I' (initiate) transaction on the input stream for this student is clearly
unacceptable and must be recognized as an error.

 Error handling is defined in this step to filter out errors so that the realized model
simulates the real world faithfully. We may view the input system as being interposed
between the real world entity and our system, as shown in the SSD below:

 127

 STUDENT-0 STUDENT-1INPUT
 SUB-SYSTEM

VS

 ERRORS

 SV

The function of the input subsystem is to ensure that only valid transactions, indicated by
the data stream V, are input to the specification of STUDENT-1. Let us suppose that in
our student loan system, we choose to simply reject those transactions that are not valid
for the given state of a particular student's model process. We can examine the current
state of the student model process by inspecting its state vector. We will use a variable,
state, to keep track of a student's current state, initializing it to 'eval' when a student
model process is first instantiated. We will assume that state and the rest of a student's
state vector reflect the point at which read V operations occur in STUDENT-1's text as
follows: Either an 'E' or an 'A' transaction (evaluation or agree action) is acceptable for a
new student model process initially. After an agree transaction has been processed, state
must be set to 'init'. The only acceptable transaction is an 'I' (initiate loan). After
processing the initiate loan transaction, state is set to 'repay'. Acceptable transactions are
either 'R' or 'T' (repay or terminate). After a 'T' transaction has been processed, state is
set to 'init', indicating that the student process is expecting to initiate another loan
following termination of the last one.

 Referring to STUDENT-1's process text, we can compose the following state
transition diagram containing labeled states corresponding to the components of the
STUDENT-1 process (EVAL, AGREE, INIT, REPAY and TERM), and the acceptable
transactions for each state.

 EVAL AGREE INIT

'I' 'R' or 'T'

 REPAY

'E' or 'A'

TERM

 'I'

 The program text for the input sub-system is given below:

 128

INPUT-SUBSYSTEM seq
 read S(transrec);
 FILTER iter <while not eof>
 getsv(student-id);
 ACCEPT-TRANS sel <trans-code valid for student-id current state>
 write V(transrec);
 ACCEPT-TRANS alt
 ACCEPT-TRANS end
 read S(transrec);
 FILTER end
INPUT-SUBSYSTEM end

10.3 Network Phase

 In the network phase, we connect model processes and functions in a single
system specification diagram (SSD). In our system, we have one entity and two
functions. The SSD is shown below:

 S STUDENT-1

E R

Ack
 SV

 Payment
 acknowledgement
 lister (PAL)

Daily
list

DT

Loan balance
enquiry function

The loan balance inquiry function (LBE) is connected to the Student-1 process by state
vector (SV) connection. In this type of connection, one process can examine the state
vector of a second process. The double lines indicate that an inquiry
process, over its life, will examine many student processes.

 The function to produce the student acknowledgments data stream (ACK) is
embedded in the student-1 process in the repays component as shown below:

 DT is an input signal at the end of the day--a daily time marker--that tells the
payment acknowledgment lister (PAL) function to begin. The ACK and DT data streams
are rough-merged, that is, we don't know precisely whether a repayment acknowledgment
will appear on today's or tomorrow's daily list.

 The loan balance inquiry function (LBE) is designed using JSP as shown below:

 129

 get STUDENTSV(student-id);
 write 'loan balance for ', stud ent-id,
 ' is ', balance'
 read E;
LBE-BODY

E STUDENT-1
SVs

 STUDENT-1
 SV

*
 Enquiry

*

 R

Reply

(i) input and output
 data structures:

 Loan balance
 enquiry function

C-enquiry
P-reply

*

(iii) list of operations:
1 - write 'loan balance for', stud ent-id, 'is', balance
2 - get STUDENT SV (student-id)
3 - read E

(iv) elaborated program structure and text:

 3

 2 1 3

 LBE

 LBE-body

 C-enq
 P-reply

 *

LBE seq
 read E;
 LBE-BODY itr (forever)

end
LBE end

(ii) basic program
 structure

*

10.4 Implementation phase

 First we examine the timing constraints of the system. The problem description
for our system states that inquiries are to be answered on-line but repayment
acknowledgments at the end of the day.

 We then consider possible hardware and software for implementing our system.
We decide to implement all student processes on a single processor. Each student
process could have been allocated a dedicated processor.

 Based on hardware and timing constraints, we design a system implementation
diagram (SID) shown below:

 130

 Scheduler
 All S,
 Enq.,
 DT

 stud
SVs

Enquiry
 reply

 STUDENT-1
 Loan balance
 enquiry
 function

PAL Daily
 lister

 In the SID, all of the serial data streams are input to the scheduler process. Note
that the all student processes have an identical structure text; only their state vectors are
different. Consequently, we can separate the state vectors of student processes from their
process text--this separation is called state vector separation. The set of state vectors
constitutes the data base of our student loan system.

 The student-1 process is inverted with respect to its data stream, S. Student-1 is
called by the scheduler to process a transaction, and then suspended when it has
completed the processing of the transaction, with control returning to the scheduler. Note
that the scheduler must access the student's state vector corresponding to the student-id
on the input data stream, and for saving the updated state vector on completion of
processing the transaction.

 The loan balance inquiry is invoked by the scheduler when it has read an inquiry.

 The repayment acknowledgment lister (PAL) is inverted with respect to both of
its inputs, the repayment acknowledgment data stream and the daily marker. PAL is
invoked by Student-1 whenever Student-1 processes a repayment transaction. The
scheduler invokes PAL directly when it receives a DT and this triggers the daily listing.

 The scheduler process is designed with JSP, and is shown below:

 131

 2

 1
Loan balance
enquiry
 (LBE)

Student
loan part

 1

Day-Body DT

 Scheduler

 Day
*

 6

*

Records

Record

 3 4 5

° °

List of operations:

1-read input
2-call LBE(inrec)
3-get SSV(student-id)
4-call student-1(srec, ssv)
5-put SSV(student-id)
6-call PAL(DT)

 The exact meaning of the scheduler structure diagram is as follows: On any given
day, records from the serial data stream (loan balance inquiries and student loan
transactions) are read and processed in real-time. At the end of the day, a daily time
marker--perhaps a signal to the system from the operator--is input, and the payment
acknowledgment lister program is invoked. It processes payment acknowledgments that
have been previously generated in real-time whenever a student repayment is made and
stored in a buffer.

 132

