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JSP and JSD

The Jackson Development Methods are JSP (Jackson Structured Programming) and JSD
(Jackson System Development). JSP is a method for designing programs as compositions of
sequential processes; JSD is a method for specifying and designing systems whose
application domain has a strong temporal flavour and contains objects whose behaviour is
describable in terms of sequences of events. Many program and system development
problems thus fall within the scope of JSP and JSD, and the methods have been used to
develop data processing systems, control systems, systems software, embedded systems, and
even a music synthesiser. The UK Government adopted JSP as a standard in 1974, using a
slightly modified version known as SDM (Structured Design Method).

JSP and JSD differ from some widely used methods in two main respects. First, they pay
attention initially to the domain of the software and only later to the software itself. Their
first descriptions describe not the software, but its subject matter. Second, they focus on
time-ordering: on event sequencing rather than on static data models. For a JSP program, the
domain is the time-ordered streams of records or of events that the program must process.
For a JSD system, the domain is the real world in which the entities exhibit concurrent time-
ordered behaviours that the system must model and compute about. If JSD entities are
regarded as objects, JSD may be said to be object-oriented.

Historically, JSD grew out of JSP; the origins of JSD can be clearly seen in a chapter
(Systems and Programs) of the original description of JSP [Jackson 1975]. JSD can be
regarded as an extension of JSP to handle larger and more complex compositions of
sequential processes, and to address issues of specification and of implementation in typical
systems operating environments.

The major sources for JSP are [Jackson 1975], [Ingevaldsson 1979], [Cameron 1983/89], and
[Sanden 1985]. The major sources for JSD are [Jackson 1983], [Cameron 1983/89], and
[Sutcliffe 1988]. Some works in languages other than English are included among the
references at the end of this article. Interesting material on the formalisation of JSP and JSD
can be found in [Hughes 1979] and [Sridhar and Hoare 1985]. Suggestions for enhancing the
methods in various directions can be found in [Potts et al 1985], [Kato and Morisawa 1987],
and [Poo and Lay zell 1990]. A more extensive bibliography is given in [Cameron 1983/89].

THE JSP PROGRAM DESIGN METHOD

Basis of The Method

A program to be designed must process one or more sequential streams of data. The
sequentiality of these streams may be spatial or temporal: for example, a stream of data



printed on paper or recorded on magnetic tape is spatially sequential, while a stream of
messages arriving from an on-line terminal or a stream of interrupts is temporally sequential.
The association of a program with its data streams is shown diagrammatically in a System
Network Diagram (SND) such as Figure 1. Data streams A, B and C are represented by
circles; the program P is represented by a rectangle; the arrows indicate the direction of data
flow.

The basic idea is to describe the structures of the sequential streams as regular languages and
to form the structure of the program by composing the stream languages into one superset
regular language. For example, if the program has an input stream (a(bc)*) and an output
stream ((de)*f) and the instances of d and e are constructed from the corresponding instances
of b and c respectively, then the program structure is (a((b&d)(c&e))*f) .

This program structure can be thought of as a synchronised traversal of both data structures,
in which corresponding items from the two structures (b and d, and c and e) are encountered
together. The structures are regular expressions because regular languages provide the three
basic constructs — sequence, selection, and iteration — of ‘structured programming’. To
describe such regular languages a diagrammatic notation is used. The simple example above
is shown in this notation in Figure 2. The two trees on the left of the figure show the data
structures; the double-headed arrows between them show the correspondences between their
data items; and the tree on the right shows the resulting program structure.

A star in the upper right corner of a box means the same as a star in a regular expression:
each IBODY consists of zero or more consecutive IPAIRs.
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Figure 1.  System Network Diagram (SND)
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This technique of program structuring can be compared to the simpler technique of
structuring a recursive descent parser according purely to the grammar of the input text to be
parsed, and has comparable advantages of clarity and certainty.

The executable operations of the program (comparable to semantic routines in a compiler)
can be embedded quite easily in the program structure, because the structure has a program
component associated with each component of each data stream. In JSP, determining what
executable operations are required and embedding them in the program structure are separate
development steps, postponed until the program structure has been designed. Operations
must often be associated with a non-leaf component, such as I&OPAIR in Figure 2 above: it
is therefore important that the structures should accurately reflect the program functionality
as shown by the correspondences.

Reading Ahead and Backtracking

In particular, data and program structures should not be distorted by anticipated difficulty in
parsing or navigating a structure. For example, if an input stream has the structure
(a((bc)|(bd))*) there is a parsing difficulty when an input b is encountered: is it the first part
of a (bc) or is it the first part of a (bd)? The difficulty should not be tackled by rewriting the
structure as (a(b(c|d))*) because this rewriting is a distortion, likely to make the structure less
clear and the operations harder to embed in the structure. It should be overcome by reading
ahead an appropriate number of records in the input stream (the ‘multiple read-ahead’
technique). More difficult cases may demand a backtracking technique, in which program
control flow is explicitly modified and the side-effects (of partial traversal of one path that is
subsequently rejected in favour of another) are explicitly treated. In this way the problem of
dynamic navigation of the structures is separated from the problem of giving their clearest
and most appropriate static descriptions.

Structure Clashes: Classification and Resolution

In some cases it is not possible to form a single program structure from the data structures
because they do not admit of a single synchronized traversal. In such cases a ‘structure clash’
is said to be present. The program must then be designed as a network of sequential
processes rather than as one process.

There are three types of structure clash:

(a) A ‘boundary clash’, in which two structures have groups of data — non-terminal data
items — whose boundaries are not synchronised: for example, paragraphs and pages, or
months and weeks. Two processes are required, communicating by a stream in which the
‘highest common factor’ items are passed from one to the other.

(b) An ‘ordering clash’, in which corresponding data item instances are differently ordered in
two structures. Again, two processes are required, communicating by an intermediate
structure in which data can be written in one order and read in the other.

(c) An ‘interleaving clash’, in which groups of data that occur sequentially in one structure
are interleaved in another structure. Consider, for example, a chronological list of calls made
at a telephone exchange and a report of the same calls arranged chronologically within
subscriber. One sequential process is needed for each interleaved group, together with a



process to separate out the interleaving and, frequently, another to recombine the output
streams from the interleaved group processes.

Structure clashes are, of course, inherent features of the problems in which they occur: they
arise from the problem, not from the use of a particular design technique. The contribution of
JSP is to show how they may be recognised and resolved.

Program Inversion Technique

Where structure clashes are recognised and resolved, the resulting program consists of two or
more sequential processes, each structured to reflect the structures of its data streams. An
implementation issue immediately arises: how are the processes to be scheduled? JSP
provides an implementation technique, program inversion, for scheduling simple networks of
processes communicating by data streams: program inversion can be used with any
imperative language that has labels and GOTO statements.

Program inversion allows a sequential process, reading an input stream I and writing an
output stream O, to be implemented as any of the following: a main program P; a procedure
PI that consumes one record of I on each invocation (and gradually produces the stream O); a
procedure PO that produces one record of O on each invocation (and gradually consumes the
stream I). The procedure PI is said to be ‘P inverted with respect to I’, and the procedure PO
is said to be ‘P inverted with respect to O’. Implementation of inverted programs is discussed
in detail in Chapters 8 and 9 of [Jackson 1975] and in Section 3.3 of [Cameron 1983/89].
Essentially, the read or write operations on the relevant data stream are implemented by
saving the process state and returning, the next invocation causing a resumption in the saved
state.

With program inversion, a pair of communicating processes can be implemented by making
one a subroutine of the other. The process that is to become the subroutine is inverted with
respect to the data stream by which the processes communicate; the other is implemented as
a main program, invoking the subroutine for each record of the stream.

State-Vector Separation

The state of an inverted program — the pointer to the place in the text where execution is to
be next resumed and the values of any other local variables of the program — must be
preserved from one invocation to the next. In some implementations this can be done
implicitly by using ‘static’ or ‘own’ variables; in others a different treatment is required, and
the state vector (a data structure containing the program state) must be recognised as a
variable in its own right. Like any other variable, it can be passed as a parameter to a
procedure, its value can be assigned, and it can be written to backing storage for retrieval at a
later time.

State-vector separation is a transformation in which the state-vector of an inverted program is
declared as an explicit data structure, and is passed to the procedure as a parameter: one
inverted program and many different instances of its state vector can then implement many
processes sharing a common definition but having distinct identities and states. This
technique allows a natural implementation of the process networks that result from the
resolution of interleaving clashes. The processes for the interleaved groups are implemented



by inversion and state-vector separation; the main program invokes a particular interleaved
process by passing its separated state vector to the inverted program.

FROM JSP TO JSD

Program inversion technique is an important element in the progression from JSP to JSD.
Two other important elements are the recognition and resolution of interleaving clashes and
an implementation technique — state-vector separation — used to deal with the resulting
multiplicity of processes.

Data Processing Systems

A very simple data processing system with one entity type and transactions that update the
entity records can be seen as a large program exhibiting an interleaving clash. The input is a
chronologically ordered stream of transactions in which the transaction sequence for each
entity instance is interleaved with the sequences for the other instances.

Standard resolution of the interleaving clash gives one process to separate out the
interleaving and one process for each entity instance. The entity processes are inverted with
respect to their input streams of transactions, and their state vectors are separated and stored
in the database. The resulting procedure receives a database record (state vector) and
transaction (input stream record) as parameters, and updates the database record.

The entity processes are ‘long-running programs’: if the entities are employees, then the
elapsed time from the beginning to the end of execution of one entity process will be as long
as the employee’s career — probably many years. During most of this long execution time
the process is waiting for its next input record: that is, for the next relevant event in the
employee’s life. But this is merely a scheduling consideration.

This process-oriented view of the nature of a simple data processing system is developed in
Chapter 11 of [Jackson 1975] and summarised in Section 5.1.1 of [Cameron 1983/89].

THE BASIS OF JSD

Modelling the Real World

By setting aside, or at least postponing, consideration of the scheduling of processes on the
computer, the process-oriented view derived from JSP highlights the modelling relationship
between the system and its application domain or ‘real world’. The processes running in the
computer are seen to model the behaviour of entities in the real world. As each relevant event
occurs in the life of the real employee, so a record appears in the input stream of the process
corresponding to that employee. The JSP data structure of the process input stream is a
description of the ordering of events in the employee’s lifetime.

JSD takes this modelling relationship as its starting point. Just as JSP assumes that the
program to be designed has sequential streams of input and output data, so JSD assumes that
the application domain, or real world, is populated by objects or entities that engage in events
that are sequentially ordered in time. Descriptions of the behaviour of these entities will
provide the basis for the sequential processes of the system.



System Outputs and Functions

Clearly it is not enough that the system should constitute a model of the real world, kept up
to date as real world events occur. It is also necessary to exploit information from the model
to provide screen displays, summaries and reports, and to produce outputs such as invoices
and payslips for a data processing system or control signals for an embedded system.

JSD regards the production of these outputs as constituting the ‘system function’, and
distinguishes them sharply from the ‘real- world model’. The model is regarded as primary,
and the functions as secondary: the model is defined first, and the functions are then defined
on the basis of the model. This approach is common in simulation, where the simulation of
reality is defined first, and then a variety of reporting and analysis functions are added later.

Relationship of Model to Function

The underlying relationship of a system’s functions to its model of the real world is, of
course, circular. In principle it is possible, given a model, to determine what functions it can
support; in principle it is also possible, given a set of functions, to determine what model is
needed to support them. But there are good reasons to regard the model as primary and the
functions as secondary. First, defining functions intelligibly requires the use of terms taken
from the real world. Second, the set of functions required of a system is much more volatile
than the underlying real-world model. Third, the real-world model can be regarded as itself
defining an envelope of all possible system functions: the system can provide those functions
for which the necessary information is available in the model, and no others.

Data Models and Event Models

The idea of modelling the real world is not unique to JSD. But JSD is unusual in two
respects: it insists on a rigorous separation of model from function, expelling from the model
any events or entities that properly belong to the system function; and its models are based on
events and sequential processes rather than on data. Data models concentrate on the states of
the modelled domain; event and process models concentrate on the way in which those states
change.

In JSD a data model is largely derived from the event and process model. This is appropriate
for the majority of applications in which describing the dynamic time-ordered behaviour of
entities captures a larger part of the relevant properties of the real world than describing the
system state.

JSD DEVELOPMENT STEPS: INTRODUCTION

The development steps of JSD as originally formulated in [Jackson 1983] are six: the entity
action step; the entity structure step; the initial model step; the function step; the system
timing step; and the implementation step. As described in [Cameron 1986] and [Cameron
1988] these steps were later modified and rearranged into three development phases:

• The modelling phase, in which the real world is described in terms of events, entities,
roles, event orderings, and entity attributes.

• The network phase, in which the system processes are configured into a process network,
beginning with the model processes and adding other processes to collect input data,
produce outputs, and generate certain model inputs.



• The implementation phase, in which timing is considered, the implementation and
scheduling of the process network are decided, and the database, if there is one, is
designed.

The exposition in this section follows the broad lines of this later formulation, and also draws
on some later refinements and elaborations of the method.

THE MODELLING PHASE

Identifying Real-World Events
JSD modelling begins by identifying the real world events (also called actions) that are of
interest. For each event type a name is chosen, an informal description is written by which
occurrences of the event type in the real world may be recognised, and the attributes of the
event are listed. For example, in a library application, the event list may include:

 ACQUIRE The library acquires a book.     (book-id, date, ISBN)
 CLASSIFY A book is classified.      (book-id, class)
 JOIN   A new member joins the library.      (member-id, name, address, date)
 LEAVE  A member leaves the library.      (member-id, date)
 BORROW  A member borrows a book from the library.       (book-id, date, member-id)
 RETURN  The borrowing member returns a book to the library.      (book-id, date,
                   member-id)
 SELL   The library sells one of its books.      (book-id, date, price)

Each event is something that happens in the real world, not in the computer system itself; it is
regarded as atomic; it is not decomposable into sub-events; and it is considered to happen
instantaneously.

In a realistic application there may be a hundred or more event types in the list. The event list
is a first step in defining the scope of the system. It includes only those real-world events of
which the system will take cognisance, and so acts as a filter through which the system views
and formalises the real world.

Identifying Real-World Entities and Structures
In the original version of JSD, identification of real-world entities was roughly on a par with
identification of events: there was an event list and an entity list. Because the entities of most
interest in JSD development were those that have a significant time-ordered history of events,
it was soon recognised that their identification could be combined with defining the
structures of event orderings.

For example, in the library application, books and members are obvious entities of interest.
But if this were not immediately clear, it would emerge from a consideration of the ordering
of events: the ordered subsets of all events are those in which one particular book participates
and those in which one particular member participates. These orderings are shown in two JSP
structures in Figure 3.



The circles in the upper right corners of BORROW, RETURN and Other in the Member
structure in Figure 3 indicate that they are parts of a selection: each M-action is either a
BORROW, or a RETURN, or an Other. These two structures describe the concurrent
behaviour of the many books and the many members of the library.

Entity Attributes
As an entity progresses through its event history its state changes. At one time the book is in
the library, at another it is not; at one time it has not yet been classified, then it has; at one
time it is on loan to a particular member, at another time to another member, and at yet
another time it is not on loan to any member.

Such a set of states defines the attributes of an entity. A book has a ‘current borrower’
attribute; initially, at the beginning of the book’s life, its value is NULL; when the book is
borrowed by member M the attribute value becomes M; when the book is returned it
becomes NULL again. The book attribute ‘number of loans’ is initially zero; it may be
incremented on each BORROW event, or, alternatively, on each RETURN event.

This second example illustrates an important advantage of defining entity attributes in this
way, on the basis of a time-ordered structure of events: the meanings of the attribute values
can be made fully unambiguous. The attribute ‘number of loans’ could reasonably mean
either ‘number of completed loans’ or ‘number of started loans’: by explaining the values in
terms of the events by which they are changed, misunderstanding is avoided.

This derivation of entity attributes from events may be seen as a second step in defining the
scope of the system. The event list determines what events are relevant; the entity attributes
determine what is remembered about those events.

Common Actions
Some events, such as CLASSIFY, involve only one entity. Others, such as BORROW,
involve both a member entity and a book entity. In this way the set of entity structures can
define more complex constraints on the ordering of events than can be defined by one
structure alone: the BORROWing of a book occurs only if the member has previously
JOINed and has not yet performed a LEAVE event, and only if the book’s most recent event
was either CLASSIFY or RETURN.

Figure 3.  Ordering of Events
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Data Models
The common event BORROW and the ‘current borrower’ attribute illustrate the basis of the
association between a data model and an event model. In an entity-relation model, for
example, there would be member and book entities, and a relation ‘is borrowing’ between
them. This relation is reflected in the event model by the fact that the value of the ‘current
borrower’ attribute of the book entity is an identifier of a member entity; the value is derived
from the occurrence of a common event in which the book and the member both participated.
Consideration of the common events and the attributes derived from them allows a data
model to be obtained from a JSD event model.

Multiple Roles
The event ordering for one entity type may not be completely describable in one structure. In
general, an entity may play more than one role in the real world. For example, a vehicle
owned by an organisation may have two roles: in the first, operational, role the events
concern assignments to particular drivers, periods of use on projects, incidents such as
accidents, and repairs and regular servicing; in the second, financial, role the events concern
purchase, sale, licensing, disbursement of running costs, and depreciation (amortisation).
These different roles will require to be kept separate both on general grounds of application
modularity and because they are likely to exhibit boundary clashes: for example, there is
probably a boundary clash between the periods of project use and the licensing periods.
Often, distinct roles of an entity will have common actions, reflecting the synchronisation
between different aspects of the entity’s behaviour. The association of several roles with one
entity type and the sharing of roles among entity types may be compared to the treatment of
object properties by class-based inheritance.

Static Roles
Viewing entity attributes as components of process states, their values definable in terms of
event occurrences, is an important insight. But not all relevant attributes can usefully be
regarded in this way. An employee’s date of birth or marital status is clearly definable in
terms of events, but those events are hardly within the scope of a payroll system. To handle
such attributes it is useful to allow ‘static’ roles, whose attributes are either fixed by events
outside the scope of the system or are changed by arbitrary replacement of their values: the
replacement events are considered to be unconstrained in the order of their occurrence with
respect to each other and to other events.

THE NETWORK PHASE: PROCESSES AND CONNECTIONS

In the modelling phase the work centres on describing the real world in terms of entities,
events, and entity and event at tributes. So far no explicit attention has been paid to the
computer system itself. In the network phase a set of sequential processes is defined that
models the real world; this set is then elaborated into a process network by the addition of
processes for handling input messages from the real world and for generating system outputs.

The System Specification Diagram
The connections among processes in the network are shown in a System Specification
Diagram or SSD: this is a much more elaborate version of the System Network Diagram of
JSP. The processes in a SSD are considered to be executing asynchronously. The types of
connection are illustrated in Figure 4. Each set of processes of a given type is represented by



a rectangle (P, Q, R and S). There are three forms of process communication: data stream
connection, represented by a circle (A, B, C, D, E and G); controlled data stream connection,
represented by a circle with a vertical bar (F); and state-vector inspection, represented by a
diamond (Q). Decomposition of SSDs by levels is little used; for particular purposes, partial
SSDs are drawn containing only those processes and connections that are of current interest.

Data Stream Communication
A data stream is an unbounded queue. The read operation on a data stream retrieves (and
removes) the next record from the queue. If the queue is empty then the process executing
the read operation waits until a record becomes available. The write operation on a data
stream places the next record in the queue. Since the queue is unbounded the process
executing the write operation is never forced to wait.

State-Vector Inspection
A state-vector inspection is a ‘getsv’ operation in which the executing process is granted
read-only access to the state vector of the inspected process. The getsv operation never
causes the inspecting process to wait. To the inspected process a getsv operation is invisible:
the inspected process executes no operation corresponding to the getsv, and no test is
available to it by which it could detect that its state has been inspected.

The value of the state-vector obtained by a getsv operation represents a current or previous
state of the inspected process, at a point at which its execution is suspended. Just as the
reading process in a data stream connection may lag behind the writing process, so the
process executing a getsv operation may lag behind the inspected process, retrieving values
that represent states much earlier than its current state.

Rough Merges
A process with more than one input stream may be waiting to read a record from one stream
while a record is already available on another. No provision is made for a process to test
whether an input stream is currently empty. Instead, two or more input streams to a process
may be merged into one by an implicit process called a ‘rough merge’. In a SSD a rough
merge is represented by merging the outgoing arrows of the streams: thus in Figure 4 the
input streams C and D of process Q are rough merged, while the input streams A and B of

Figure 4.  System Specification Diagram (SSD)
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process P are not. From the point of view of the reading process Q, the streams C and D
constitute a single merged stream C&D.

Rough merge is non-deterministic: the order of arrival of C and D records at the reading
process Q will, in general, depend on the scheduling and execution speeds of the writing
processes, and these are not defined until the implementation phase. The structure of a
merged data stream must, therefore, describe all possible mergings.

Multiplicity
It will often be the case that a process communicates with many instances of another process.
The arrows on data stream and state-vector connections in the SSD are decorated with double
bars to show such multiplicity. In Figure 4, the process R inspects the state vectors of many
instances of the process Q.

Controlled Data Streams
The scheduling freedom that lies behind the process communication operations is usually
beneficial: the many processes whose concurrent execution constitutes the system behaviour
are primarily asynchronous. Sometimes, however, a tighter form of communication is
necessary: for these cases a special form of communication is provided: controlled data
stream communication. In Figure 4 the process R reads a controlled data stream F written by
process S. Controlled data streams combine data stream communication with the ability for
the data stream writer to examine the current state of the reader and with a form of critical
region.

THE NETWORK PHASE: MODEL AND FUNCTION

Model and Input Processes
The description of the real world that has been made in the Modelling Phase allows a very
direct simulation by sequential processes within the system. Essentially each role or entity
becomes an executable process in the system, consuming an input stream that contains a
record for each relevant event in the real world. All data are local to these processes, which
may be regarded as encapsulated objects.

In addition to these entity or role processes, the system must contain processes to distribute
the messages coming from the real world to the system processes to which they are relevant.
This distribution must ensure not only that messages are routed to the appropriate processes
but also that messages are not sent to processes that are not able to handle them: a message
for a common action must be sent to all the relevant processes or to none. The input
processes must therefore check the acceptability of each message before routing it to a model
process: the con trolled data stream provides the necessary form of communication.

Embedded Functions
Some of the output functions of the system can be added directly to model processes. For
example, if a simple acknowledgement of a BORROW event is required, it is straightforward
to embed the production of the necessary information in the book model process. Such
simple functions are called ‘embedded functions’. They are usually associated with the
occurrence of a single event and require information that is to be found in the state of a single
model process.



Output Functions with State-Vector Connection
Many output functions can be provided by the addition of one process that is connected to the
model by state-vector inspection: the function process has an input stream of query messages,
and for each query it obtains its output information by examining the state of the model. In a
banking system a function to query the balance on an account would probably be of this kind:
in response to an input message containing an account number, it inspects the state vector of
the account process and outputs the value of the balance variable in the state vector at some
indeterminately recent time. How recent will depend on the implementation of the system: in
a fully on-line system the value will be at worst a second or two out of date; in a system with
daily batch processing components the value may be out of date by a whole day. The
implementation must be decided eventually, but not yet.

Output Functions with Data Stream Connections
Some output functions must summarise sequences of events from many model processes. For
example, the library may require a daily list of all BORROWings. In a library that is always
open, BORROWings that occur at a time close to the time of producing a daily list may
appear on that list or the next: this indeterminacy arises from the indeterminate scheduling of
the model and function processes. However, it must not be possible for any BORROWing to
be altogether omitted, and to ensure this it is necessary to use a data stream connection as in
Figure 5.

Each book process writes a record on an output stream B for each BORROW event; these
streams B are rough merged with each other and with the messages D that indicate that
another day’s list is required. The function process F reads this merged stream and produces
one day’s list whenever it encounters a D message. Extreme choices of process scheduling
may give undesirable partitioning of the total history of BORROW events into the daily lists,
but can not cause any BORROW event to be omitted.

Interactive Functions
For the model processes to simulate the real world correctly, it is necessary that they should
receive input messages informing them of all occurrences of relevant real-world events.
Sometimes it may be difficult, expensive, or even impossible to arrange such inputs directly
from the real-world, yet the event occurrences may be deducible from events already known
to the system. For example, if a library member LEAVEs, it may be inferred that all
outstanding book reservations for that member are cancelled.

Figure 5.  Data Stream Connections
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Messages for such inferred events are provided by ‘interactive function’ processes. These are
simply processes whose outputs include data streams that are fed back into model processes,
where they are rough merged with the data streams coming from the input processes.

IMPLEMENTATION PHASE

Implementation of a JSD specification is concerned with two main issues: how the processes
of the specification are to be scheduled, and how the data — the process state vectors — are
to be organised and managed. The techniques used are essentially extensions of those already
familiar from JSP.

Channel Inversion
Program inversion is extended to allow inversion with respect to more than one data stream.
For example, a process P with an input stream I and an output stream O can be inverted with
respect to both I and O, giving a procedure that may be invoked either to consume a record of
I or to produce a record of O. In certain special cases the pattern of invocations is
predetermined. For example, P may read from I and write to O alternately: this pattern
reflects a ‘conversational constraint’ on the communication, and is easily implementable by
the usual mechanism of procedure call with input and output parameters. But in general the
invoking program must be able to determine which of these operations P is ready to execute.

Explicit Schedulers
In JSP implementation of a program containing more than one process the standard approach
is to transform the set of processes into one sequential process, using program inversion and
state-vector separation. Almost always, one of the processes of the network can be chosen as
the main program, invoking all other processes directly or indirectly; the scheduling of the
network is then expressed implicitly in the inversion choices made.

In many systems, especially in control applications, a similar approach may still be used. In
others, especially data processing systems, the process network is much more complex and
the timing requirements much more detailed: some processes must be kept as nearly as
possible up to date with the real world objects they model, while others may be allowed to
lag behind far enough to permit a batch implementation of a part of the system. To handle
these more complex demands it is usually necessary to provide explicit scheduling processes.
These schedulers are themselves long-running programs, and will require transformation for
execution on a machine that is not always running and must be shared with other application
systems.

Buffering
Networks containing cycles will, in general, require buffering of data streams between
processes. The transaction files that abound in systems with batch processing components
can be viewed as buffered data streams. Typical batch update programs can be viewed as
parts of scheduling processes invoking inverted model processes to update the master
records.

Data Base Implementation
The usual techniques of data base design, especially for relational data bases, are likely to
demand a reorganisation of the process state vectors. A state vector containing repeated
groups may be normalised and split into several data base records or tuples; state vectors of



different processes, especially different roles of one entity, may be combined into one data
base record.

Access paths to data base records are explicit in the process texts of function processes that
use state-vector inspection. Optimisation of the data base organisation for these access paths
is a matter of finding a single linked structure of which each such access path is a subset. The
problem is analogous to, but different from, the problem of finding a program structure that
matches each of several data structures in JSP design.
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