
JSPPers1.doc 11/04/01 Page 1

JSP In Perspective

INTRODUCTION

JSP is a method of program design. Its origins lie in the data processing systems
that grew up in the 1960s, when reliable, relatively cheap, and adequately powerful
computers first became generally available. The fundamental abstraction in JSP is
the sequential data stream. Originally, this abstraction was inspired and motivated
by the sequential tape files that characterised data processing in the 1960s, but it
quickly became clear that it had a much wider applicability. Today the JSP design
method is valuable for such applications as embedded software and handling
network protocols.

JSP arose from efforts by a small group of people in a data processing consultancy
company to improve their programming practices, and to make their programs
more reliable and easier to understand and to modify. In 1971 it became the core
product of a very small new company, Michael Jackson Systems Limited, which
offered development services, training courses, consultancy, and from 1975
software to support JSP design of COBOL programs. The name JSP ‘Jackson
Structured Programming’ was coined by the company’s Swedish licensee in
1974. In the commercial world, IBM had appropriated the name ‘Structured
Programming’ in the early 1970s, and Yourdon Inc started offering courses in
‘Structured Design’ around 1974. A distinctive name was a commercial necessity. It
was also technically appropriate to choose a distinctive and proprietary name: the
JSP method was very different from its competitors.

1960S DATA PROCESSING SYSTEMS

Data processing systems of the early and middle 1960s were chiefly concerned with
the processing of sequential files held on magnetic tape. Reliable tape drives had
become widely available and commonly used in the late 1950s; exchangeable disk
drives first became available when IBM introduced the 1311 drive in 1963. Disk
was a very limited and expensive medium compared to tape. At 1965 prices a 1311
disk pack cost about £200 and held 2 million characters; a 2400-foot tape reel cost
about £7 and held between 20 million and 60 million characters. For large files,
which might contain millions of records, tape was the only realistic choice. Most
data processing systems had large files.

Because tape is an inherently sequential medium, updating a single record of a
master file could be done only by reading the whole file and copying it, updated, to
a new tape. This very slow process was economical only if many records were to be
updated, so tape systems were almost inevitably batch systems. Transactions for
example, payments received were recorded daily or weekly on a transaction tape
file. The transaction file was then sorted into the same sequence as the file of master
records for example, customer accounts to which the transactions were to be

sd&m Pioneers’ Conference, Bonn, June 2001

JSPPers1.doc 11/04/01 Page 2

applied; it was then used in a batch update program to produce a new version of
the master file whose records reflected the effects of the transactions.

It was always necessary to process the whole master file and to produce a complete
new version, even if the batch contained transactions for very few master records.
Processing a file that occupied one full tape might take an hour or more; some
master files occupied dozens of tapes. Even worse, there might be several master
files to be processed for example, customers, orders, invoices, and products. The
transaction file would then be sorted successively into the different sequences of the
different master files, executing a batch update program for each master file and
carrying partial results forward to the next update program in a transfer file that
would also require to be sorted. To minimise processing time master files were
amalgamated where possible. For example, the orders, instead of being held in a
master file of their own, might be held in the customer master file, the order
records for each customer following the customer record in the combined file.
These choices resulted in a database with a hierarchical structure, held on magnetic
tape: this was the kind of database for which IBM’s database management system
IMS was originally designed around 1966 in cooperation with North American
Rockwell [Blackman 98].

THE BASIC JSP IDEA

A common design fault in batch update programs was failure to ensure that the
program kept the files correctly synchronised as it traversed their hierarchical
structures. A read operation performed at the wrong point in program execution
might read beyond the record to which the next transaction should be applied. The
result would be erroneous processing of that transaction and, often, of the following
transactions and master records. Another common design fault was failure to take
account of empty sets for example, of a customer with no outstanding orders.
How could one design a program that would not have such faults?

In commercial and industrial programming in the 1960s, the program design
question was chiefly posed in terms of ‘modular programming’: What was the best
decomposition for each particular program? The primary focus was on the
decomposition structure, not on encapsulation. A 1968 conference [Barnett 68]
dedicated to modular programming attracted the participation of George Mealy,
the computer scientist who gave his name to Mealy machines. The Structured
Design ideas of coupling and cohesion [Stevens 74, Myers 76] took shape as an
approach to modularity: it was claimed that a good design could be achieved by
ensuring that the modules have high cohesion and low coupling.

The fundamental idea of JSP was very different: program structure should be
dictated by the structure of its input and output data streams [Jackson 75]. If one of
the sequential files processed by the program consisted of customer groups, each
group consisting of a customer record followed by some number of order records,
each of which is either a simple order or an urgent order, then the program should
have the same structure: it should have a program part that processes the file, with
a subpart to process each customer group, and that subpart should itself have one
subpart that processes the customer record, and so on. The execution sequence of

JSPPers1.doc 11/04/01 Page 3

the parts should mirror the sequence of records and record groups in the file.
Program parts could be very small and were not, in general, separately compiled.

The resulting structure can be represented in a JSP structure diagram, as in Figure
1. The diagram is a tree representation of the regular expression

(CustRecord (SimpleOrder | UrgentOrder) *) *

in which the expression and all of its all subexpressions are labelled. Iteration is
shown by the star in the iterated subexpression; selection is shown by the circle in
each alternative.

The structure is simultaneously the structure of the file and the structure of a
program to process the file. As a data structure it may be verbalised like this:

“The File consists of zero or more Customer Groups. Each Customer Group consists
of a Customer Record followed by a Customer Group Body. Each Customer Group
Body consists of zero or more Orders. Each Order is either a Simple Order or an
Urgent Order”

As a program structure it may be understood to mean:

 program =
 { /* process file */
 while (another customer group) do
 { /* process customer group */
 process customer record;
 { /* process customer group body /*
 while (another order) do
 { /* process order */
 if simple order then
 { /* process simple order */ }
 else
 { /* process urgent order */ }

 } } } }

Figure 1: Structure of a File
 and of a Program

FILE

CUST
GROUP

*

CUST
RECORD

CUST
GBODY

*ORDER

oSIMPLE
ORDER

oURGENT
ORDER

JSPPers1.doc 11/04/01 Page 4

MULTIPLE STREAMS

The JSP program design method insisted that the program structure should reflect
all the stream data structures, not just one. Its first steps, then, are to identify the
data structure of each file processed by the program, and to form a program
structure that embodies them all. Such a program structure allows the designer to
ensure easily that program execution will interleave all the file traversals correctly
and will keep them appropriately synchronised. Figure 2 shows an example of a
program structure based on two data structures.

For brevity, the example is stylised and trivial. The program processes an input file
IN and and output file OUT. The successive OPAIRs of OUT are constructed from
the successive IPAIRs of IN: that is, the IPAIRs and OPAIRs ‘correspond
functionally’. Similarly, the d and e records are computed from the b and c records
respectively: that is, the b and d records correspond and the c and e records
correspond. In this trivial example it is easily seen that the program structure
embodies both of the file structures exactly. In more realistic examples, a program
structure embodying all the file structures can be achieved by permissible rewritings
of the file structures. Two such rewritings are shown in Figure 3.

The data structure A1 can be rewritten as A2, and A2 as A3. Permissible rewritings
preserve the set of leaf sequences defined by the structure: A1, A2 and A3 all define
the sequence <B,C,D>. They must also preserve the intermediate nodes of each
structure: A2 may not be rewritten as A1, because the node CD would be lost. The
eventual program structure must have at least one component corresponding to
each component of each data structure.

Figure 2: Two File Structures and a Program Structure

IN

IBODYa

 IPAIR *

b c

OUT

fOBODY

OPAIR*

d e

IN&OUT

fI&OBODYa

*I&OPAIR

b&d c&e

Figure 3: Examples of Regular Expression Rewritings

A1

CB D

A2

B

C D

CD

A3

BB

C D

CD

B B
o o

⇒⇒⇒⇒

JSPPers1.doc 11/04/01 Page 5

OPERATIONS AND CONDITIONS

The prime advantage of a program structure that embodies all the file data
structures, respecting the correspondences among their parts, is that it provides an
obviously correct place in the program text for each operation that must be
executed. It also clarifies the conditions needed as guards in iteration (loop) and
selection (if-else or case) constructs.

The operations to be executed are file traversal operations, such as open, close, read
and write, and other operations that compute output record values from values of
input records. For example, in the trivial illustration of Figure 2 the operations may
be:

 open IN, read IN, close IN, open OUT, write OUT record, close OUT, d := f(b),

and so on. Each operation must appear in the program component that processes
the operation’s data. The read operations are a special case. Assuming that the input
files can be parsed by looking ahead one record, there must be one read operation
following the open at the beginning of the file, and one at the end of each
component that completely processes one input record. So, for the example of
Figure 2, the operations must be placed as shown in Figure 4.

The correspondence of program and data structures, together with the scheme of
looking ahead one record, makes it easy to determine the iteration and selection
conditions. For example, the condition on the iteration component I&OBODY is

 while (another I&OPAIR)

which translates readily into

 while (IN record is b)

in which ‘IN record’ refers to the record that has been read ahead and is currently
in the IN buffer.

52

2,5 2,5

IN&OUT

fI&OBODYa

*
 I&OPAIR

b&d c&e

3,621,4

7

Figure 4: Placing Operations in Program Structure

1. open IN
2. read IN
3. close IN
4. open OUT
5. write OUT record
6. close OUT
7. d := f(b)
...

JSPPers1.doc 11/04/01 Page 6

DIFFICULTIES

The development procedures of a method should be closely matched to specific
properties of the problems it can be used to solve. The development procedures of
basic JSP, as they have been described here, require the problem to possess at least
these two properties:

• the data structures of the input and output files, and the correspondences
among their data components, are such that a single program structure can
embody them all; and

• each input file can be unambiguously parsed by looking ahead just one record.

Absence of a necessary property is immediately recognisable by difficulty in
completing a part of the JSP design procedure. If the file structures do not
correspond appropriately it is impossible to design a correct program structure: this
difficulty is called a structure clash. If an input file can not be parsed by single look
ahead it is impossible to write all the necessary conditions on the program’s
iterations and selections: this is a recognition difficulty.

Although these difficulties are detected during the basic JSP design procedure, they
do not indicate a limitation of JSP. They indicate inherent complications in the
problem itself, that can not be ignored but must be dealt with somehow. In JSP they
are dealt with by additional techniques within the JSP method.

STRUCTURE CLASHES

There are three kinds of structure clash: interleaving clash, ordering clash, and
boundary clash.

In an interleaving clash, data groups that occur sequentially in one structure
correspond functionally to groups that are interleaved in another structure. For
example, the input file of a program may consist of chronologically ordered records
of calls made at a telephone exchange; the program must produce a printed output
report of the same calls arranged chronologically within subscriber. The ‘subscriber
groups’ that occur successively in the printed report are interleaved in the input
file.

In an ordering clash, corresponding data item instances are differently ordered in
two structures. For example, an input file contains the elements of a matrix in row
order, and the required output file contains the same elements in column order.

In a boundary clash, two structures have corresponding elements occurring in the
same order, but the elements are differently grouped in the two structures. The
boundaries of the two groupings are not synchronised.

Boundary clashes are surprisingly common. Here are three well-known examples:

• The calendar consists of years, each year consisting of a number of days. In one
structure the days may be grouped by months, but by weeks in another
structure. There is a boundary clash here: the weeks and months can not be
synchronised.

JSPPers1.doc 11/04/01 Page 7

• A chapter of a printed book consists of text lines. In one structure the lines may
be grouped by paragraphs, but in another structure by pages. There is a
boundary clash because pages and paragraphs can not be synchronised.

• A file in a low-level file handling system consists of variable-length records, each
consisting of between 2 and 2000 bytes. The records must be stored sequentially
in fixed blocks of 512 bytes. There is a boundary clash here: the boundaries of
the records can not be synchronised with the boundaries of the blocks.

The difficulty posed by a boundary clash is very real. The clash between weeks and
months causes endless trouble in accounting: in 1923 the League of Nations set up
a Special Committee of Enquiry into the Reform of the Calendar to determine
whether the clash could be resolved by adopting a new calendar [Achelis 59]. The
clash between records and blocks affected the original IBM OS/360 file-handling
software: the ‘access method’ that could handle the clash software that supported
‘spanned records’ proved the hardest to design and was the last to be delivered.

The JSP technique for dealing with a structure clash is to decompose the original
program into two or more programs communicating by intermediate data
structures. A boundary clash, for example, requires a decomposition into two
programs communicating by an intermediate sequential stream. The structure of
the intermediate stream is based on the ‘highest common factor’ of the two clashing
structures. For example, an accounting program may have a boundary clash
between an input file structured by months and an output file structured by weeks.
Figure 5 shows the data structures.

The solution to the difficulty is to decompose the program into two: one program
handles the Months, producing an intermediate file that is input to a second
program that handles the Weeks. For the second program the intermediate file
structure must have no Month component: any necessary information from the
MonthHeader record must therefore be encoded in the OneDay records of the
intermediate file.

Monthly
Data

One
Month

Month
Body

One
Day

*

*

Month
Header

Weekly
Data

One
Week

Week
Body

One
Day

*

*

Week
Header

Week
Total

7

4

4

Figure 5: Structures Exhibiting a Boundary Clash

JSPPers1.doc 11/04/01 Page 8

RECOGNITION DIFFICULTIES

A recognition difficulty is present when an input file can not be unambiguously
parsed by single look-ahead. Sometimes the difficulty can be overcome by looking
ahead two or more records; sometimes a more powerful technique is necessary.

The two cases are illustrated in Figure 6. The structure on the left can be parsed by
looking ahead three records: the beginning of an AGroup is recognised when the
third of the lookahead records is an A. But the structure on the right can not be
parsed by any fixed look-ahead. The JSP technique needed for this structure is
backtracking.

The JSP procedure for the backtracking technique has three steps:

• First, the recognition difficulty is simply ignored. The program is designed, and
the text for the AGroup and BGroup components is written, as usual. No
condition is written on the Group selection component. The presence of the
difficulty is marked only by using the keywords posit and admit in place of if and
else.

• Second, a quit statement is inserted into the text of the posit AGroup component
at each point at which it may be detected that the Group is, in fact, not an
AGroup. In this example, the only such point is when the B record is
encountered. The quit statement is a tightly constrained form of GO TO: its
meaning is that execution of the AGroup component is abandoned and control
jumps to the beginning of the admit BGroup component.

• Third, the program text is modified to take account of side-effects: that is, of the
side-effects of operations executed in AGroup before detecting that the Group was
in fact a BGroup.

Y * Y *readread read read read read

Y Z BY Z A

File

Group*

AGroup
o

open read;
read;
read

BGroup
o

YY Z BYY Z A

File

Group*

AGroup
o

BGroup
o

Figure 6: Structures Requiring Multiple
 Read-ahead and Backtracking

JSPPers1.doc 11/04/01 Page 9

PROGRAM INVERSION

The JSP solution to structure clash difficulties seems, at first sight, to add yet more
sequential programs and intermediate files to systems already overburdened with
time-consuming file processing. But JSP provides an implementation technique
program inversion that both overcomes this obstacle and offers other important
positive advantages.

The underlying idea of program inversion is that reading and writing sequential
files on tape is only a specialised version of a more general form of communication.
In the general form programs communicate by producing and consuming
sequential streams of records, each stream being either unbuffered or buffered
according to any of several possible regimes. The choice of buffering regime is, to a
large extent, independent of the design of the communicating programs. But it is
not independent of their scheduling. Figure 7 shows three possible
implementations of the same system.

In the upper diagram two ‘main’ programs, P and Q, communicate by writing and
reading an intermediate tape file F. First P is run to completion; then F is rewound;
then Q is run to completion. In the lower left diagram the intermediate tape file has
been eliminated: the ‘main’ program Q has been inverted with respect to F. This
inversion converts Q into a subroutine Q′, invoked by P whenever P requires to
produce a record of F. Q′ functions as a ‘consume next F record’ procedure.
Similarly, in the lower right diagram the ‘main’ program P has been inverted with
respect to F. This inversion converts P into a subroutine P′, invoked by Q whenever
Q requires to consume a record of F. P′ functions as a ‘produce next F record’
procedure. Both inversions interleave execution of P and Q as tightly as possible:
each F record is consumed as soon as it has been produced.

Two or more programs may be inverted in one system. Inverting Q with respect to
F, and P with respect to E, gives a subroutine P′′ that uses the lower-level
subroutine Q′; the function of the two together is to consume the next record of E,
producing whatever records of G can then be constructed.

Inversion has an important effect on the efficiency of the system. First, it eliminates
the storage space and device costs of the intermediate tape file. It eliminates the
time required by the device to write and read each record of F, and also the ‘rewind
time’ to reposition the newly written file for reading: for a magnetic tape file this

PE QF G

PE

Q’ G P’E

Q G

Figure 7: Using Inversion to Eliminate
 an Intermediate File

JSPPers1.doc 11/04/01 Page 10

may be many minutes for one reel. Second, it makes each successive record of G
available with the least possible delay: each G record is produced as soon as P has
consumed the relevant records of E.

Inversion also has an important effect on the program designer’s view of a
sequential program. The ‘main program’ P, the subroutine ‘P inverted with respect
to F’, and the subroutine ‘P inverted with respect to E’, are seen as identical at the
design level. This is a large economy of design effort. The JSP-COBOL
preprocessor that supports JSP design for COBOL programs allows the three to
differ only in their declarations of the files E and F.

The effect on the program designer’s view goes deeper than an economy of design
effort. An important example of the distinction between design and implementation
is clarified; procedures with internal state can be designed as if they were main
programs processing sequential message streams; and JSP design becomes
applicable to all kinds of interactive systems, and even to interrupt handlers.
Program inversion also suggests the modelling of real-world entities by objects with
time-ordered behaviours: this is the basis of the eventual enlargement of JSP to
handle system specification and design [Jackson 83].

A PERSPECTIVE VIEW OF JSP

Although JSP was originally rooted in mainframe data processing, it has been
applied effectively in many environments. For applying JSP, the necessary problem
characteristic is the presence of at least one external sequential data stream, to
provide a given data structure that can and should be used as the basis of the
program structure. Many programs have this characteristic. For example:

• a program that processes a stream of EDI messages;

• an automobile cruise control program that responds to the changing car state
and the driver’s actions;

• a program that justifies text for printing;

• a file handler that responds to invoked operations on the file;

• a program that generates HTML pages from database queries.

JSP was developed in the commercial world, often in ignorance of work elsewhere.
Some of the JSP ideas were reinventions of what was already known, while others
anticipated later research results. The JSP relationship between data structures and
program structure is essentially the relationship exploited in parsing by recursive
descent [Aho 77]. Some of the early detailed JSP discussion of recognition
difficulties dealt with aspects that were well known to researchers in formal
languages and parsing techniques. The idea of program inversion is closely related
to the Simula [Dahl 70] concept of semi-coroutines, and, of course, to the later Unix
notion of pipes as a flexible implementation of sequential files. There was also one
related program design approach in commercial use: the Warnier method [Warnier
74] based program structure on the regular data structure of one file. Program
decomposition into sequential processes communicating by a coroutine-like

JSPPers1.doc 11/04/01 Page 11

mechanism was discussed in a famous early paper [Conway 63]; it was also the basis
of a little-known development method called Flow-Based Programming [Morrison
94].

The central virtues of JSP are two. First, it provides a strongly systematic and
prescriptive method for a clearly defined class of problem. Essentially, independent
JSP designers working on the same problem produce the same solution. Second,
JSP keeps the program designer firmly in the world of static structures to the
greatest extent possible. Only in the last step of the backtracking technique, when
dealing with side-effects, is the JSP designer encouraged to consider the dynamic
behaviour of the program. This restriction to designing in terms of static structures
is a decisive contribution to program correctness for those problems to which JSP
can be applied. It avoids the dynamic thinking the mental stepping through the
program execution that has always proved so seductive and so fruitful a source
of error.

ACKNOWLEDGEMENTS

The foundations of JSP were laid in the years 1966-1970, when the author was
working with Barry Dwyer, a colleague in John Hoskyns and Company, an English
data processing consultancy. Many of the underlying ideas can be traced back to
Barry Dwyer’s contributions in those years. Refining the techniques, and making
JSP more systematic and more teachable in commercial courses, was the work of the
following four years in Michael Jackson Systems Limited.

The JSP-COBOL preprocessor was designed by the author and Brian Boulter, a
colleague in Michael Jackson Systems Limited. Brian Boulter was responsible for
most of the implementation.

Many other people contributed to JSP over the years John Cameron, Tony
Debling, Leif Ingevaldsson, Ashley McNeile, Hans Naegeli, Dick Nelson (who
introduced the name ‘JSP’), Bo Sanden, Peter Savage, Mike Slavin and many
others. A partial bibliography of JSP can be found in [Jackson 94].

Daniel Jackson read a draft of this paper and made several improvements.

REFERENCES

[Achelis 59] Elisabeth Achelis; The Calendar for the Modern Age; Thomas Nelson and Sons,
1959.

[Aho 77] A V Aho and J D Ullman; Principles of Compiler Design; Addison-Wesley, 1977.
[Barnett 68] Barnett and Constantine eds; Modular Programming: Proceedings of a National

Symposium; Information & Systems Press, 1968.
[Blackman 98] K R Blackman; IMS celebrates thirty years as an IBM product; IBM Systems

Journal, Volume 37 Number 4, 1998.
[Conway 63] Melvin E. Conway; Design of a Separable Transition-Diagram Compiler;

Communications of the ACM Volume 6 Number 7, 1963.
[Dahl 70] O-J Dahl, B Myhrhaug and K Nygaard; SIMULA-67 Common Base Language.

Technical Report Number S-22, Norwegian Computer Centre, Oslo, 1970.
[Jackson 75] M A Jackson; Principles of Program Design; Academic Press, 1975.

JSPPers1.doc 11/04/01 Page 12

[Jackson 83] M A Jackson; System Development; Prentice-Hall International, 1983.
[Jackson 94] Michael Jackson; Jackson Development Methods: JSP and JSD; in Encyclopaedia of

Software Engineering, John J Marciniak ed, Volume I; John Wiley and Sons, 1994.
[Morrison 94] J Paul Morrison; Flow-Based Programming: A New Approach to Application

Development; Van Nostrand Reinhold, 1994.
[Myers 76] Glenford J. Myers; Software Reliability: Principles & Practices; Wiley, 1976.
[Stevens 74] W P Stevens, G J Myers, and L L Constantine; Structured Design; IBM Systems

Journal Volume 13 Number 2, 1974.
[Warnier 74] Jean-Dominique Warnier; Logical Construction of Programs; H E Stenfert

Kroese, 1974, and Van Nostrand Reinhold, 1976.

Michael Jackson
11th April 2001

